SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK	CONCLUSION
000	0000	0000	0000 0000000	00

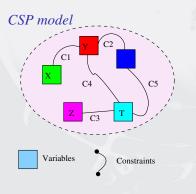
Modèle d'hybridation pour la résolution de CSP ROADEF 2008, Clermont-Ferrand, France

Tony LAMBERT

LIFO, Rue Léonard de Vinci 45067 ORLEANS

Mercredi 27 février 2008

A (B) A (B) A (B) A (B)


OLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPI
00	0000	0000
000	0	000

I TO AN UNIFORM FRAMEWO 0000 0000000

Constraint programming process

Formulate the problem with constraints as a CSP

- constraint : a relation on variables and their domains
- Constraint Satisfaction Problem (CSP) : a set of constraints together with a set of variable domains

- $\mathcal{X} = \{x_1, \dots, x_n\}$ set of *n* variables,
- $\mathcal{D} = \{D_{x_1}, \dots, D_{x_n}\}$ set of *n* domains,
- $C = \{c_1, \ldots, c_m\}$ set of *m* constraints.

ヘロン 人間 とくほう くほう 二日

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK	CONCLUSION
000	0000	0000	0000 0000000	00

Problems are modeled as CSPs(X, D, C)

Some variables to represent objects $(X = \{X_1, \dots, X_n\})$

Domains over which variables can range $(D = D_1 \times \ldots \times D_n)$

Some constraints to set relation between objects

. . .

 $C_1: X \le Y * 3$ $C_2: Z \ne X - Y$

SOLVING CSP	Hybrid solving : need a framework	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK	CONCLUSION
000 0000	0000	0000	0000 0000000	00

CSP solving

A solution

- Given a search space $S = D_{x_1} \times ... \times D_{x_n}$
- an assignment s is a solution if :
 - $\boldsymbol{s} \in \mathcal{S}$ and
 - $\forall c \in C, s \in c$

Solving a CSP can be :

- compute whether the CSP has a solution (satisfiability)
- find A solution
- find ALL solutions
- find optimal solutions (global optimum)
- find A good solution (local optimum)

(日本)(国本)(日本)(日本)

000 0000	SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK
	000	0000

INTEGRATE SPLIT IN G

TO AN UNIFORM FRAMEWORK CO

Outline

Solving CSP

Hybrid solving : need a framework

Integrate split in GI

To an uniform framework

Conclusion

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWOR
000	0000
0000	0

INTEGRATE SPLIT IN 0000 000 TO AN UNIFORM FRAMEWORK CONC 0000 00 0000000 00

First approach

Complete Methods

- Search space : $D_{x_1} \times \cdots \times D_{x_n}$
- Enumerate all assignments

Backtracking

- search (backtrack)
- Select variables
- Split / enumeration

Constraint propagation : reducing domains

Generally :

- reduce domains using constraint and domains
- \rightarrow reduce the search space

Generic domain reduction :

- given a constraint *C* over x₁,..., x_n with domains D₁,..., D_n
- select a variable x_i reduce its domain
- delete from D_i all values for x_i that do not participate in a solution of C

 SOLVING CSP
 Hybrid solving : need a framewor

 000
 0000

 0000
 0

Integrate spli1 0000 000 TO AN UNIFORM FRAMEWORK

くロン く得 とく ヨン く ヨン

Constraint propagation

- constraint propagation mechanism : repeatedly reduce domains
- replace a CSP by a CSP which is :
 - equivalent (same set of solutions)
 - "smaller" (domains are reduced)

SOLVING CSP	Hybrid	SOLVING :	
000	0000		
000	0		

/BRID SOLVING : NEED A FRAMEWORK

INTEGRATE SPLIT 0000 000 TO AN UNIFORM FRAMEWORK

Second Approach

Incomplete methods

- heuristics algorithms
- Metaheuristics

two families

- Local search
 - Simulated annealing [Kirkpatrick et al, 1983]
 - Tabu Search [Glover, 1986]
 - ...
- Evolutionary Algorithms
 - Genetic Algorithms [Holland, 1975]
 - Genetic programming [Koza, 1992]
 - ...

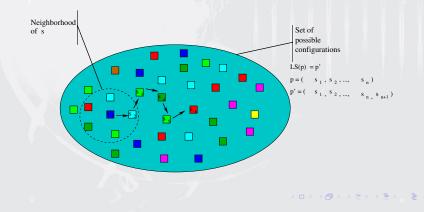
VING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INT
)	0000	00
0	0	00

Incomplete methods

Definitions

Solv

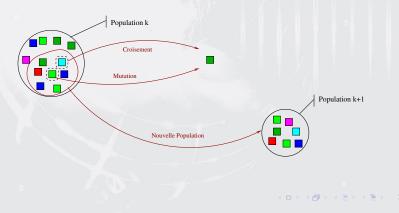
- Explore a $D_1 \times D_2 \times \cdots \times D_n$ search space
- Move from neighbor to neighbor (resp. generation to generation) thanks to an evaluation function
 - Intensification
 - Diversification


Properties :

- focus on some "promising" parts of the search space
- does not answer to unsat. problems
- no guaranteed
- "fast" to find a "good" solution

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK	CONCLUSION
000	0000	0000	0000	00
0000	0	000	0000000	

Local search


- · Search space : set of possible configurations
- Tools : neighborhood and evaluation function

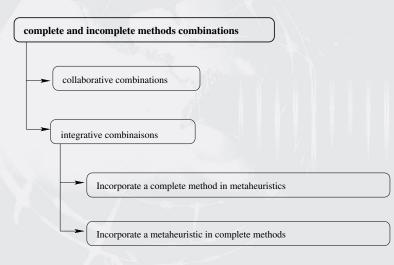
Genetic algorithms

- Search space : set of possible configurations
- Tools : population, crossing,mutations, and evaluation function

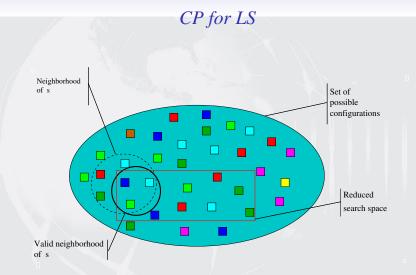
NG CSP HYBRID SOLVING : NEED A FRAMEWORK

CONCLUSION 00

Hybridization : getting the best of the both

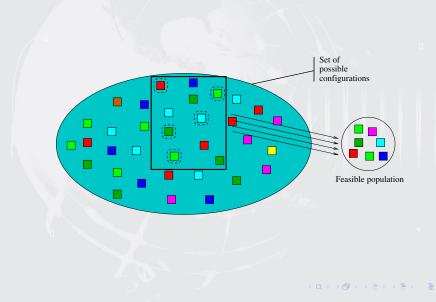

- Efficiency : faster complete solver
- Quality : better solutions (better optimum)
- Generally :
 - Ad-hoc systems (designed from scratch)
 - Dedicated to a class of problems
 - Master-slave approaches (LS for CP, CP for LS)

DLVING CSP HYBRID SOLVING : NEED A FRAMEWORK


INTEGRATE SPLIT 0000 000

10 AN UNIFORM FRAME 0000 0000000 CONCLUSION 00

Hybridization : Overview



16/40

SOLVING CSP 000 0000 HYBRID SOLVING : NEED A FRAMEWORK

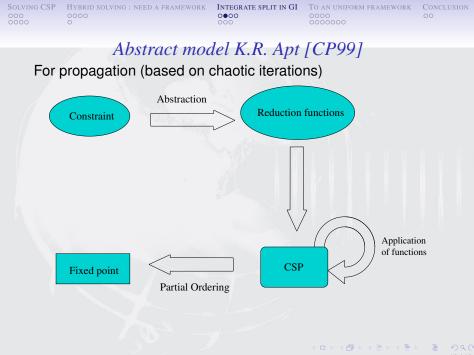
INTEGRATE SPLI 0000 000 TO AN UNIFORM FRAMEWOR 0000 0000000

< 同 > < 三 > < 三 >

CONCLUSION 00

Hybridization : getting the best of the both

- Idea :
 - fine grain hybridization
 - finer strategies
 - every technique at the same level
 - one algorithm squeleton
 - easier to modify, extend, compare, ...


Constraint propagation framework

Can be seen as a fixed point of application of reduction functions

- reduction function to reduce domains or constraints
- can be seen as an abstraction of the constraints by reduction functions

Chaotic iteration

- Compute a limit of a set of functions [Cousot and Cousot 77]
- monotonic and inflationary functions in a generic algorithm to achieve consistency [Apt 97]

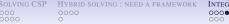
VING CSP HYBRID SOLVING : NEED A FRAMEWOR 0 0000 00 0

Partial ordering and functions

Partial Ordering

Given a CSP $(\mathcal{X}, \mathcal{D}, \mathcal{C})$

- $\mathcal{P}(\mathcal{D})$: all possible subset from \mathcal{D}
- \sqsubseteq : subset relation \supseteq

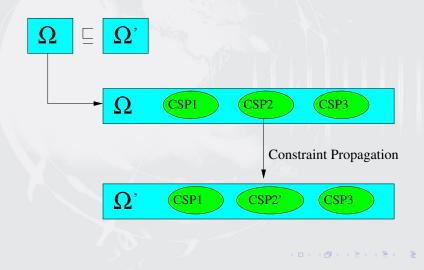

 $\Longrightarrow (\mathcal{P}(\mathcal{D}), \sqsubseteq)$ is a partial ordering

Functions

Given a set *F* of functions on \mathcal{D} , every $f \in F$ is :

- inflationary : $x \sqsubseteq f(x)$
- monotonic : $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$
- idempotent : f(f(x)) = f(x)

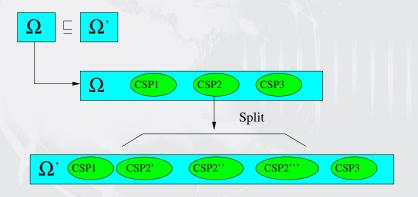
 \implies Every sequence of elements $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ with $d_j = f_{i_j}(d_{j-1})$ stabilizes to a fix point.


A Generic Algorithm to reach fixpoint

```
for constraint propagation : ordering on size of domains
work on a CSP
F = \{ set of propagation functions\}
X = initial CSP
G = F
While G \neq \emptyset
             choose g \in G
             G = G - \{g\}
             G = G \cup update(G, g, X)
             X = g(X)
EndWhile
```

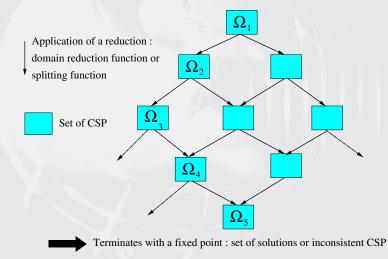

Theoretical model for CSP solving

Reduction : by constraint propagation :



22/40

Theoretical model for CSP solving


Reduction by domain splitting :

 ING CSP HYBRID SOLVING : NEED A FRAMI

TO AN UNIFORM FRAMEWORK CO 0000 00 0000000 00

Theoretical model for CSP solving Partial ordering :

 SOLVING CSP
 Hybrid solving : need a framework

 000
 0000

 000
 0

Integrate split in (0000 000 TO AN UNIFORM FRAMEWORK

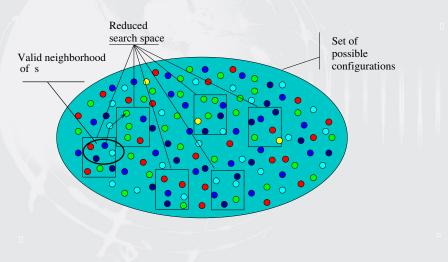
イロン 不良 とくほう イロン

25/40

Motivation

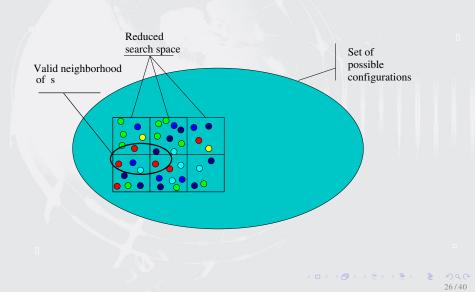
• But : GA + CP + LS ?

 \implies Notion of sample \neq generation


 \Longrightarrow Need to consider sample and individual at the same level : CSP level

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK
000	0000
0000	0

INTEGRATE SPLIT IN G 0000 000 TO AN UNIFORM FRAMEWORK

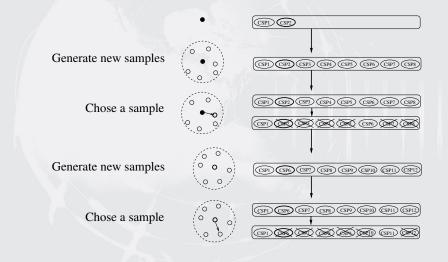

CONCLUSION 00

Motivation


SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK
000	0000	0000	0000
0000	0	000	0000000

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK	CONCLU
000	0000	0000	•000 0000000	00

Search Tree


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

OLVING CSP HYBRID SOLVING : NEED A FRAMEWORK

INTEGRATE SPLIT IN 0000 000 TO AN UNIFORM FRAMEWORK

CONCLUSION 00

Example : Local Search

Example : Genetic algorithms

29/40

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK
000	0000

Integrate split in 0000 000 TO AN UNIFORM FRAMEWORK

Break up methods

Basic components

- reducing is a search component
- splitting is a search component
- generating a neighborhood is a search component
- moving to sample is a search component

Basic behaviours

- splitting and generating a neighborhood
- reducing, selecting and moving to sample

 SOLVING CSP
 Hybrid solving : need a framework

 000
 0000

 0000
 0

INTEGRATE SPLIT IN 0 0000 000 TO AN UNIFORM FRAMEWORK

Basic fonctions

Sampling S: $\mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$

$\rightarrow \mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$

$$\{\phi_1,\ldots,\phi_n\}\mapsto\{\phi_1,\ldots,\phi_n,\phi_{n+1}\}$$

s.t. $\exists \phi_i \text{ with } \phi_i \sqsubseteq \phi_{n+1}$

 SOLVING CSP
 Hybrid solving : need a framework

 000
 0000

 0000
 0

INTEGRATE SPLIT IN 0 0000 000 TO AN UNIFORM FRAMEWORK (0000)

ヘロン 不同 とく ヨン トロン

32/40

Basic fonctions

Reducing \mathcal{R} : $\mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$

 $\rightarrow \mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$

$$\{\phi_1,\ldots,\phi_i,\ldots,\phi_n\}\mapsto\{\phi_1,\ldots,\phi_i',\ldots,\phi_n\}$$

Where $\phi'_i = \emptyset$ or $\phi = \langle X, C, D_i \rangle$ and $\phi' = \langle X, C, D'_i \rangle$ s.t. $D'_i \subseteq D_i$.

OLVING CSP HYBRID SOLVING : NEED A FRAMEWOR 000 0000 0000 0

INTEGRATE SPLIT

 TO AN UNIFORM FRAMEWORK
 C

 0000
 0

 0000000
 0

Reduction functions (1)

Domain reduction (DR) $\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \rightarrow^{DR} \{\phi_1, \dots, \phi'_i, \dots, \phi_n\}$ Where $DR = \mathcal{R}^m$ with m > 0

Split (SP) $\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \rightarrow SP \{\phi_1, \dots, \phi_i^1, \dots, \phi_i^m, \dots, \phi_n\}$ Where $SP = S^m \mathcal{R}$

Local Search (LS) $\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \rightarrow^{LS} \{\phi_1, \dots, \phi'_i, \dots, \phi_n\}$ Where $LS = S^m \mathcal{R}^{m-1}$

SOLVING CSP	Hybrid	SOLVING	NEED	А	FRAMEW
000	0000				

Reduction functions (2) Genetic Algorithms

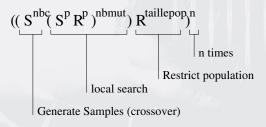
Crossover $\{\phi_1, \dots, \phi_n\} \rightarrow CR \{\phi_1, \dots, \phi_n, \phi_{n+1}\}$ Where CR = S

Mutation

 $\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \rightarrow^{MU} \{\phi_1, \dots, \phi'_i, \dots, \phi_n\}$ Where $MU = S\mathcal{R}$

Selection

 $\{\phi_1, \dots, \phi_n\} \rightarrow^{SE} \{\phi_1, \dots, \phi'_n\}$ Where $SE = \mathcal{R}^m$.


SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK
000	0000
0000	•

INTEGRATE SPLIT IN G 0000 000

Examples

Memetic Algorithms

nbc samples are generated then some are used in a local search process and finaly the population is reduced.

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK	INTEGRATE SPLIT IN GI	TO AN UNIFORM FRAMEWORK	CONCLUSION
000	0000	0000	0000 0000000	00

Examples

Hybrid Algorithms

Local search, domains reduction, genetic algorithm and split are executed sequentially.

(LSⁿ DR^{*} GA^m SP¹)^{*} Until it reached a solution/all solutions/inconsistency Split Genetic Algorithm Domain reduction Local Search

000 0000	SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK
	000	0000

INTEGRATE SPLIT IN G 0000 000 TO AN UNIFORM FRAMEWORK

Properties

- a strategy is a sequence of words $\in \{DR, SP, LS, SE, CR, MU\}$
- is it finite sequences?
- need conditions to avoid loops

SOLVING CSP	HYBRID SOLVING : NEED A FRAMEWORK
000	0000

INTEGRATE SPLIT IN (0000 000 TO AN UNIFORM FRAMEWO! 0000 0000000 CONCLUSION

Conclusion

- A generic model for hybridizing complete (CP) and incomplete (LS and GA) methods
- Implementation of modules working on the same structure
- Complementarity of methods : hybridization

	USION
000 0000 0000 0000 0000 0000 000000 0000	

Modèle d'hybridation pour la résolution de CSP ROADEF 2008, Clermont-Ferrand, France

Tony LAMBERT

LIFO, Rue Léonard de Vinci 45067 ORLEANS

Mercredi 27 février 2008

・ 同 ト ・ ヨ ト ・ ヨ ト