Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Hybridization of complete and incomplete methods to solve CSP

Tony Lambert

LERIA, Angers, France

LINA, Nantes, France

October 27th, 2006

Rapporteurs :

Examinateurs :

Directeurs de thèse :

François FAGES Bertrand NEVEU, Steven PRESTWICH, Jin-Kao HAO, Éric MONFROY, Frédéric SAUBION, Directeur de Recherche, INRIA Rocquencourt Ingénieur en Chef des Ponts et Chaussées, HDR Associate Professor, University College Cork Professeur à l'Université d'Angers Professeur à l'Université d'Angers

Tony Lambert

Solving CSF

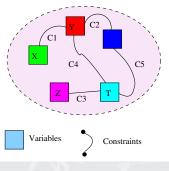
Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS


Conclusion and future works

Constraint programming process

Formulate the problem with constraints as a CSP

- constraint : a relation on variables and their domains
- Constraint Satisfaction Problem (CSP) : a set of constraints together with a set of variable domains

CSP model

- $\mathcal{X} = \{x_1, \dots, x_n\}$ set of *n* variables,
- $\mathcal{D} = \{D_{x_1}, \dots, D_{x_n}\}$ set of *n* domains,
- *C* = {*c*₁,..., *c*_{*m*}} set of *m* constraints.

Tony Lambert

Solving CS

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Problems are modeled as CSPs (X, D, C)

Some variables to represent objects $(X = \{X_1, \dots, X_n\})$

Domains over which variables can range $(D = D_1 \times \ldots \times D_n)$

. . .

Some constraints to set relation between objects

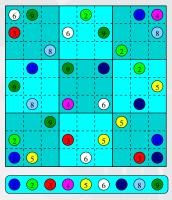
$$\begin{array}{l} C_1: X \leq Y * 3 \\ C_2: Z \neq X - Y \end{array}$$

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Example : Sudoku problem

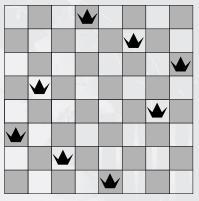
- $\mathcal{X} = \{ \text{ all the cells in the grid} \},$
- $\mathcal{D} = \{ \text{ to each cell a value in } [1..9] \},$
- C = { set of alldiff constraints : all digits appears only once in each row ; once in each column and once in each 3 × 3 square the grid has been subdivided}

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

```
To an uniform
framework CP +
GA + LS
```

Conclusion and future works

Example : 8 Queens

- $\mathcal{X} = \{x_1, ... x_8\}$ Columns,
- $\mathcal{D} = \{D_{x_1}, ..., D_{x_8}\}$ for each columns, the row the queen is placed $D_{x_i} = [1..8]$,
- $C = \{ not 2 queens in the same row or same diagonal \}$

Tony Lambert

Solving CSI

- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

CSP solving

A solution

- Given a search space $S = D_{x_1} \times ... \times D_{x_n}$
- an assignment *s* is a solution if :
 - $\pmb{s} \in \mathcal{S}$ and
 - $\forall \boldsymbol{c} \in \mathcal{C}, \boldsymbol{s} \in \boldsymbol{c}$

Solving a CSP can be :

- compute whether the CSP has a solution (satisfiability)
- find A solution
- find ALL solutions
- find optimal solutions (global optimum)
- find A good solution (local optimum)

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Outline

Solving CSP

2 Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

5

6

To an uniform framework CP + GA + LS

Conclusion and future works

Tony Lambert

- Solving CSP Propagation + Spli
- Local Search Genetic Algorithms
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

Solving CSP

- Hybrid solving : need a framework
- 3 Integrate split in GI
 - Theoretical model for hybridization CP + LS
 - Theoretical model for hybridization/CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

Tony Lambert

Solving CSP

Propagation + Spli Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

complete/incomplete methods

complete methods (such as propagation + split)

- complete exploration of the search space
- detect if no solution
- global optimum
- generally slow for hard combinatorial problems

• incomplete methods (such as local search)

- focus on some "promising" parts of the search space
- do not detect if no solution
- no global optimum
- "fast" to find a "good" solution

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Solving CSP

Methods

Complete methods

Incomplete methods

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Complete methods

General methods that can be adapted to several types of constraints and several types of variables

- search methods : to explore the search space
- constraint propagation algorithms : to repeatedly remove inconsistent values from domains of variables

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

First approach

Complete Methods

- Search space : $D_{x_1} \times \cdots \times D_{x_n}$
- Enumerate all assignments

Backtracking

- search (backtrack)
- Select variables
- Split / enumeration

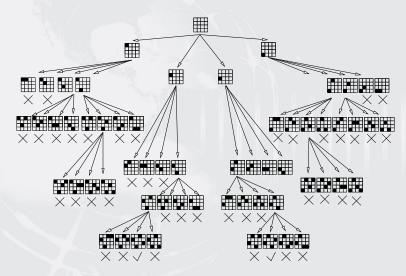
Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Backtracking for 4 - Queens

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Constraint propagation : reducing domains

Generally :

- reduce domains using constraint and domains
- \rightarrow reduce the search space

Generic domain reduction :

- given a constraint *C* over x_1, \ldots, x_n with domains D_1, \ldots, D_n
- select a variable x_i reduce its domain
- delete from *D_i* all values for *x_i* that do not participate in a solution of *C*

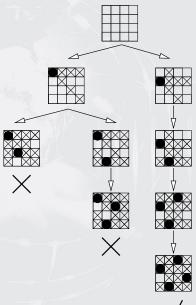
Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in G


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Forward Checking

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Constraint propagation

- constraint propagation mechanism : repeatedly reduce domains
- replace a CSP by a CSP which is :
 - equivalent (same set of solutions)
 - "smaller" (domains are reduced)

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Constraint propagation framework

Can be seen as a fixed point of application of reduction functions

- reduction function to reduce domains or constraints
- can be seen as an abstraction of the constraints by reduction functions

Chaotic iteration

- Compute a limit of a set of functions [Cousot and Cousot 77]
- monotonic and inflationary functions in a generic algorithm to achieve consistency [Apt 97]

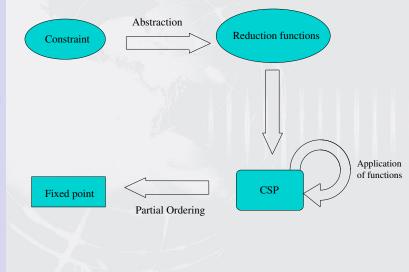
Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Abstract model K.R. Apt [CP99] For propagation (based on chaotic iterations)

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Partial ordering and functions

Partial Ordering

Given a CSP $(\mathcal{X}, \mathcal{D}, \mathcal{C})$

- $\mathcal{P}(\mathcal{D})$: all possible subset from \mathcal{D}
- \sqsubseteq : subset relation \supseteq

 $\Longrightarrow (\mathcal{P}(\mathcal{D}), \sqsubseteq)$ is a partial ordering

Functions

Given a set *F* of functions on \mathcal{D} , every $f \in F$ is :

- inflationary : $x \sqsubseteq f(x)$
- monotonic : $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$
- idempotent : f(f(x)) = f(x)

⇒ Every sequence of elements $d_0 \sqsubseteq d_1 \sqsubseteq ...$ with $d_j = f_{i_j}(d_{j-1})$ stabilizes to a fix point.

Tony Lambert

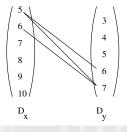
Solving CSP

Propagation + Split Local Search Genetic Algorithms

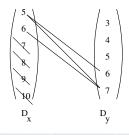
Hybrid solving : need a framework

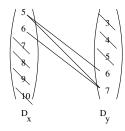
Integrate split in GI

Theoretical model for hybridization CP + LS


Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS


Conclusion and future works


Example of reduction functions (1)

Constraint x < y

Arc_consistence on D_x and Arc_consistence on D_y

Tony Lambert

Solving CSF

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Example of reduction functions (2)

Arc consistency

Consider a constraint x < y with $D_x = [5..10]$ and $D_y = [3..7]$ then 2 functions $\mathcal{D} \to \mathcal{D}$:

Arc_consistence 1 :

$$(D_x,D_y)\mapsto (D_x\prime,D_y)$$

s.t.

$$D_x \prime = \{ a \in D_x \mid \exists b \in D_y, a < b \}$$

Arc_consistence 2 :

$$(D_x, D_y) \mapsto (D_x, D_{y'})$$

s.t.

$$D_{y'} = \{ b \in D_y \mid \exists a \in D_x, a < b \}$$

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

A Generic Algorithm to reach fixpoint

for **constraint propagation** : ordering on size of domains work on a CSP

- $F = \{ \text{ set of propagation functions} \}$
- X = initial CSP

G = F

While $G \neq \emptyset$

```
choose g \in G

G = G - \{g\}

G = G \cup update(G, g, X)

X = g(X)
```

EndWhile

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Solving CSP

Methods

Complete methods

Incomplete methods

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Second Approach

Incomplete methods

- heuristics algorithms
- Metaheuristics

two families

- Local search
 - Simulated annealing [Kirkpatrick et al, 1983]
 - Tabu Search [Glover, 1986]

• ...

- Evolutionary Algorithms
 - Genetic Algorithms [Holland, 1975]
 - Genetic programming [Koza, 1992]
 - ...

Tony Lambert

Solving CSP

Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Incomplete methods

Definitions

• Explore a $D_1 \times D_2 \times \cdots \times D_n$ search space

• Move from neighbor to neighbor (resp. generation to generation) thanks to an evaluation function

- Intensification
- Diversification

Properties :

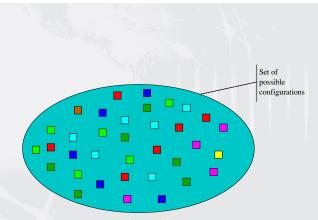
- focus on some "promising" parts of the search space
- does not answer to unsat. problems
- no guaranteed
- "fast" to find a "good" solution

Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in G


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

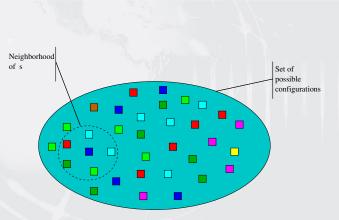
Local search (1)

Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

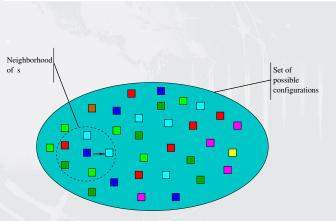
Local search (2)

Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

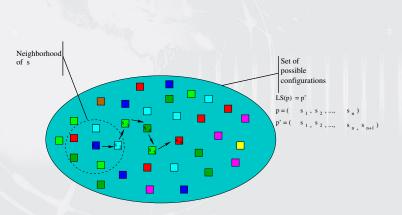
Local search (3)

Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Local search (4)

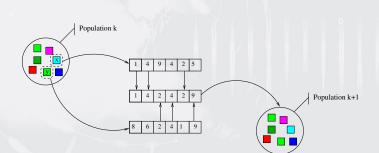
Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS


Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Genetic algorithms (1)

Search space : set of possible configurations
Tools : population, crossing, mutations, and evaluation function

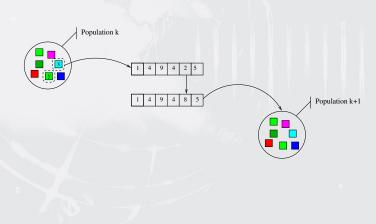
Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS


Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Genetic algorithms (2)

- Search space : set of possible configurations
- Tools : population, crossing, **mutations**, and evaluation function

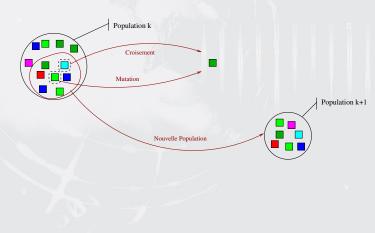
Tony Lambert

Solving CSP Propagation + Split Local Search Genetic Algorithms

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS


Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Genetic algorithms (3)

- Search space : set of possible configurations
- Tools : population, crossing, mutations, and evaluation function

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Why hybridization complete/incomplete Hybridization : getting the best of the both

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Solving CSP

2 Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Why hybridization complete/incomplete

Hybridization : getting the best of the both

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Hybridization : getting the best of the both

- Efficiency : faster complete solver
- Quality : better solutions (better optimum)
- Generally :
 - Ad-hoc systems (designed from scratch)
 - Dedicated to a class of problems
 - Master-slave approaches (LS for CP, CP for LS)

Tony Lambert

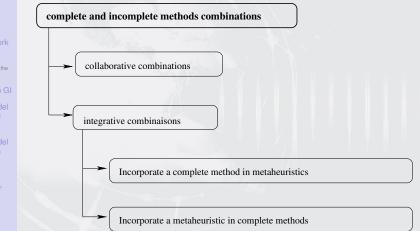
Solving CSP

Hybrid solving : need a framework

Why hybridization complete/incomplete

Hybridization : getting the best of the both

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Hybridization : Overview

Tony Lambert

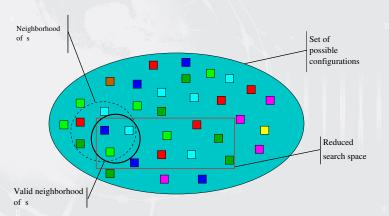
Solving CSF

Hybrid solving : need a framework

Why hybridization complete/incomplete

Hybridization : getting the best of the both

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

CP for LS

Tony Lambert

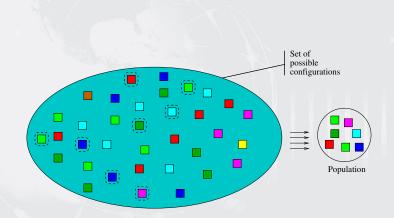
Solving CSF

Hybrid solving : need a framework

Why hybridization complete/incomplete

Hybridization : getting the best of the both

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

CP for GA (1)

Tony Lambert

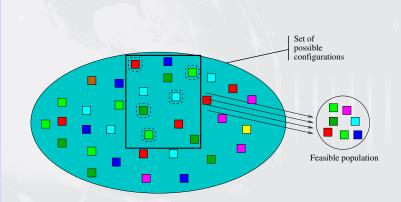
Solving CSF

Hybrid solving : need a framework

Why hybridization complete/incomplete

Hybridization : getting the best of the both

Integrate split in GI


Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

CP for GA (2)

Tony Lambert

Solving CSP

Hybrid solving : need a framework

Why hybridization complete/incomplete

Hybridization : getting the best of the both

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Hybridization : getting the best of the both

Idea :

- fine grain hybridization
- finer strategies
- every technique at the same level
- one algorithm squeleton
- easier to modify, extend, compare, ...

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in GI Constraint propagation Domain splitting

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Solving CSP

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI Constraint propagation Domain splitting

Theoretical model for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Our purpose :

Use of an existing theoretical model for CSP solvingDefinition of the solving process

Integrate :

Split

LS

GA

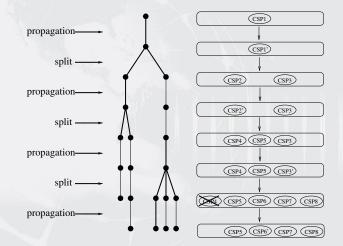
Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in GI

Constraint propagation Domain splitting


Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Search Tree

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Constraint propagation Domain splitting

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Idea 1 : Integrate split in GI

- use the CP framework algorithm
- split and reduction at the same level
- work on union of CSP

Tony Lambert

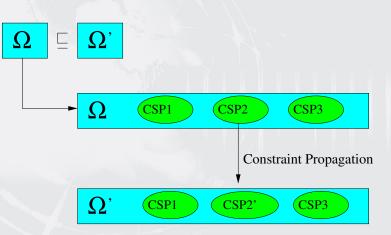
Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Constraint propagation Domain splitting

Theoretical model for hybridization CP + LS


Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Theoretical model for CSP solving (2)

Reduction : by constraint propagation :

Tony Lambert

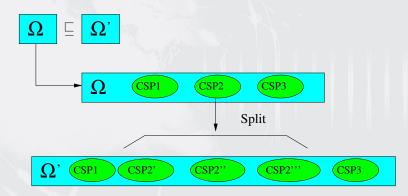
Solving CSF

Hybrid solving : need a framework

Integrate split in G Constraint propagation

Domain splitting

Theoretical model for hybridization CP + LS


Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Theoretical model for CSP solving (3)

Reduction by domain splitting :

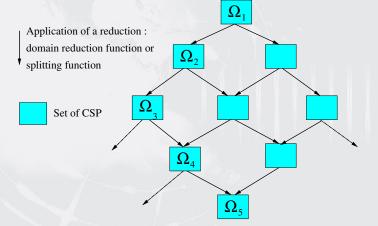
Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI Constraint propagation Domain solitting

Theoretical m


for hybridization CP + LS

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Theoretical model for CSP solving (1) Partial ordering :

• Terminates with a fixed point : set of solutions or inconsistent CSP

Tony Lambert

- Solving CS
- Hybrid solving : need a framework
- Integrate split in GI

Theoretical model for hybridization CP + LS

- LS as moves on a partial ordering Integrate samples for LS Ordering *σ CSP* A Generic Algorithm Experimentation
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

Solving CSP

- Hybrid solving sneed a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS

LS as moves on a partial ordering

Integrate samples for LS Ordering σ *CSP* A Generic Algorithm Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Our purpose :

Use of an existing theoretical model for CSP solvingDefinition of the solving process

Integrate :

Split

LS

GA

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS

LS as moves on a partial ordering

Integrate samples for LS Ordering σ *CSP* A Generic Algorithm Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Idea 2 : Integrate LS and CP

Local Search

- In theory : infinite
- In practice : number of iteration

Characteristics of a LS path

- notion of solution
- Operational (computational) point of view : path = samples
- maximum length

Goal :

- LS ordering
- integrate LS in CSP

Tony Lambert

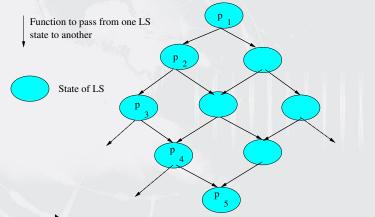
Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS

LS as moves on a partial ordering


Integrate samples for LS Ordering σCSP A Generic Algorithm Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP -GA + LS

Conclusion and future works

LS as moves on partial ordering

Terminates with a fixed point : local minimum, maximum number of iteration

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS

LS as moves on a partial ordering

Integrate samples for LS

Ordering σCSP A Generic Algorithm

Experimentation

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

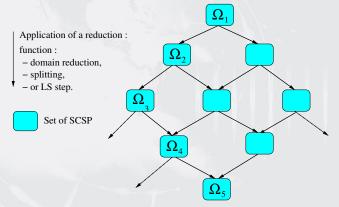
Conclusion and future works

Integrate samples for LS

• A sample :

Depends on a CSP

Corresponds to a LS state


• an SCSP contains (LS+domain reduction) :

- A set of domains ;
- A (list of) sample for local search (a LS path).
- an σCSP contains (LS+domain reduction+split) :
 A set of SCSP

Tony Lambert

- Solving CSF
- Hybrid solving : need a framework
- Integrate split in G
- Theoretical mode for hybridization CP + LS
- LS as moves on a partial ordering
- Integrate samples for LS
- Ordering σCSP A Generic Algorithm
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

Theoretical model for hybridization (3) Ordering over σ CSP

A solution before the end of the process, given by LS Terminates with a fixed point : set of solutions or inconsistent SCSP

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

LS as moves on a partial ordering

Ordering σCSP

A Generic Algorithm Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Algorithm

Always the GI algorithm

- In the chaotic iteration framework
- Finite domains (sets of SCSP)
- Monotonic functions (LS move, domain reduction, splitting)
- Decreasing functions
- → termination and computation of fixed point (solution of CP)
- Practically : can stop before with a LS solution

Tony Lambert

Solving CSI

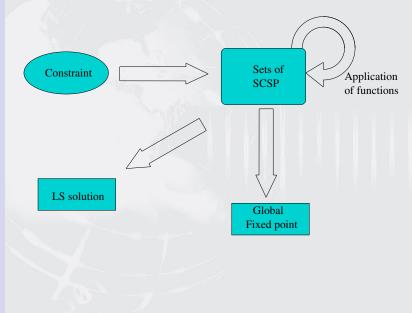
Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS

LS as moves on a partial ordering Integrate samples for LS

Ordering σCSP


A Generic Algorithm Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP -GA + LS

Conclusion and future works

General process CP+LS

Tony Lambert

- Solving CSF
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- LS as moves on a partial ordering Integrate samples for LS Ordering σ CSP
- A Generic Algorithm
- Experimentation
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works

Strategies through reduction functions

- Reduction / Split / LS functions
- Choose a / several SCPS to apply functions
- Choose a / several domains (Prop. Split)
- Tests : Random Depth first FC

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

- Theoretical model for hybridization CP + LS
- LS as moves on a partial ordering Integrate samples for LS
- Ordering σCSP
- A Generic Algorithm

Experimentation

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Strategies : ratio LS-CP

- Ratio of LS and CP functions applied : (red%,split%,ls%)
 - 10% of split compared to reduction
 - CP alone : (90,10,0)
 - LS alone : (0,0,100)
- LS strategy : tabu
- Choose : LS, reduction, or split but keep the given ratios

Tony Lambert

- Solving CSI
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical mode for hybridization CP + LS
- LS as moves on a partial ordering Integrate samples for LS Ordering σ CSP
- A Generic Algorithm
- Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Implementation

- C++
- Generic Algorithm
- choose function with percentages

Tony Lambert

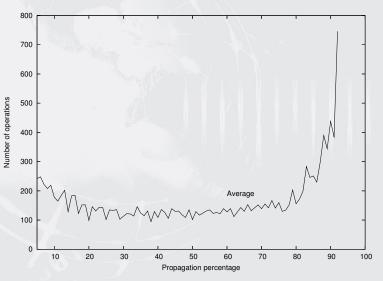
Solving CSF

Hybrid solving : need a framework

Integrate split in G

Theoretical mode for hybridization CP + LS

LS as moves on a partial ordering Integrate samples for LS Ordering σCSP A Generic Algorithm Experimentation


Experimentation

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Langford number 4 2 cooperation area

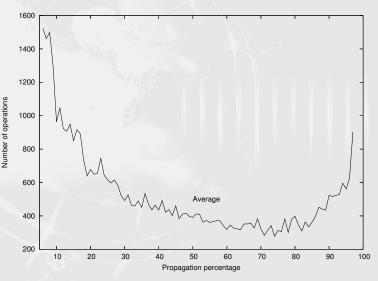
Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in G

Theoretical mode for hybridization CP + LS


LS as moves on a partial ordering Integrate samples for LS Ordering σ *CSP* A Generic Algorithm **Experimentation**

Theoretical mode for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

SEND + MORE = MONEY cooperation area

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS

LS as moves on a partial ordering Integrate samples for LS Ordering σ CSP

A Generic Algorithm

Experimentation

Theoretical model for hybridization CP + GA

To an uniform framework CP -GA + LS

Conclusion and future works

Problem S+M LN42 Zebra M. square Golomb Rate FC 70 - 80 15 - 25 60 - 70 30 - 45 30 - 40

Best range of propagation rate (α) to compute a solution

Strategy	Method	S+M	LN42	M. square	Golomb
Random	LS	1638	383	3328	3442
	CP+LS	1408	113	892	909
	CP	3006	1680	1031	2170
D-First	LS	1535	401	3145	3265
	CP+LS	396	95	814	815
	CP	1515	746	936	1920
FC	LS	1635	393	3240	3585
7	CP+LS	22	192	570	622
	CP	530	425	736	1126

Avg. nb. of operations to compute a first solution

60/86

Ranges

Tony Lambert

Solving CS

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partial ordering

GA ordering

Integrate generations for GA in CSPs

Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

Solving CSP

B Hybrid solving sneed a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partial ordering

GA ordering

GA in CSPs

Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

Our purpose :

Use of an existing theoretical model for CSP solvingDefinition of the solving process

Integrate :

Split

LS

GA

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partial ordering

GA ordering

Integrate generations for GA in CSPs


Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

Idea 3 : GA = moves in a partial ordering

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in GI

Theoretical mode for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partia ordering

GA ordering

Integrate generations for GA in CSPs

Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

GA ordering

Characteristics of a GA path

- notion of solution
- maximum length
- Operational (computational) point of view : path = generations

Here a macroscopic point of view :

1 iteration = 1 generation

Tony Lambert

- Solving CSI
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical mode for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- GA : moves in a partia ordering
- GA ordering
- Integrate generations for GA in CSPs
- Algorithm
- Application BACP (to optimize loads of periods
- To an uniform framework CP + GA + LS
- Conclusion and future works

Integrate generations for GA in CSPs

- a generation :
 - depends on a CSP
 - corresponds to a GA search state
- an ogCSP contains (GA+domain reduction) :
 a set of domains ;
 - a (list of) population(s) for GA (a GA path).
- an OGCSP contains (GA+domain reduction+split) :
 a set of ogCSPs

Tony Lambert

- Solving CSF
- Hybrid solving : need a framework

Integrate split in GI

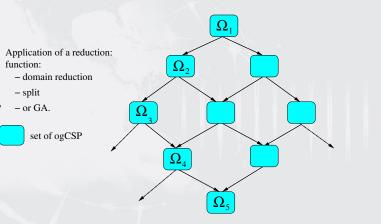
Theoretical mode for hybridization CP + LS

```
Theoretical model
for hybridization
CP + GA
```

GA : moves in a partia ordering

GA ordering

Integrate generations for GA in CSPs


Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

Theoretical model for hybridization CP+GA Ordering over OGCSPs

an optimal solution given by GA before the end of the process

fixed point: set of solutions or inconsistency

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partia ordering

GA ordering

Integrate generations for GA in CSPs

Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP -GA + LS

Conclusion and future works

Algorithm

Always the GI algorithm

- In the chaotic iteration framework
- Finite domains (set of OGCSP)
- Monotonic functions (GA move, domain reduction, splitting)
- Decreasing functions
- → termination and computation of fixed point (solution of CP)
- Practically : can stop before with an optimum for GA

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in G

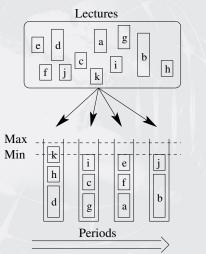
Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partia ordering

GA ordering

Integrate generations for GA in CSPs


Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

Application BACP (to optimize loads of periods)

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in G

Theoretical mode for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partia ordering GA ordering

Integrate generations for GA in CSPs

Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

Experimentations

On optimization problems

- Here, ratios are (45,5,50)
- Mesure the real impact on the resolution

Tony Lambert

Solving CSF

Hybrid solving : need a framework

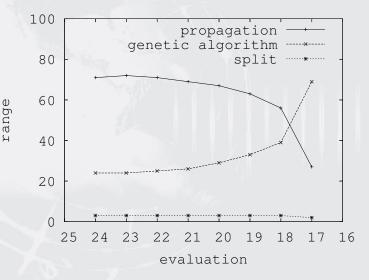
Integrate split in G

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partia ordering GA ordering

Integrate generations for GA in CSPs


Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

BACP8

Tony Lambert

Solving CSF

Hybrid solving : need a framework

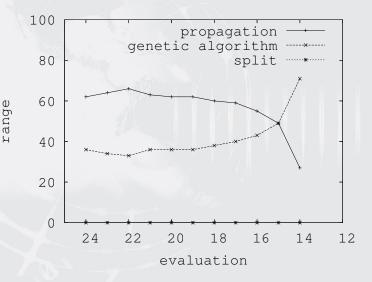
Integrate split in G

Theoretical mode for hybridization CP + LS

Theoretical mode for hybridization CP + GA

GA : moves in a partia ordering GA ordering

Integrate generations for GA in CSPs


Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

BACP10

Tony Lambert

Solving CSF

Hybrid solving : need a framework

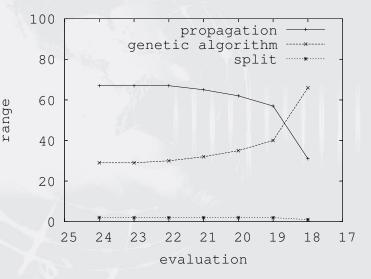
Integrate split in G

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

GA : moves in a partia ordering GA ordering

Integrate generations for GA in CSPs


Algorithm

Application BACP (to optimize loads of periods

To an uniform framework CP + GA + LS

Conclusion and future works

BACP12

Tony Lambert

- Solving CS
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Search Trees Reduction fonctions

Conclusion and future works

Solving CSP

- B Hybrid solving sneed a framework
- Integrate split in GI
 - Theoretical model for hybridization CP + LS
 - Theoretical model for hybridization/CP + GA
- 6 To an uniform framework CP + GA + LS
 - Conclusion and future works

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Search Trees Reduction fonctions

Conclusion and future works

Motivation

- LS + CP : a search path
- GA + CP : a sequence of generations
- But : GA + CP + LS ?
- \implies Notion of sample \neq generation
- \Longrightarrow Need to consider sample and individual at the same level : CSP level

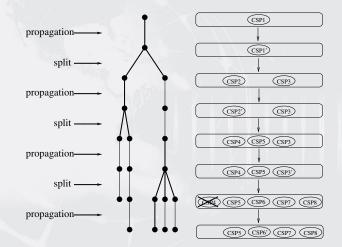
Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS

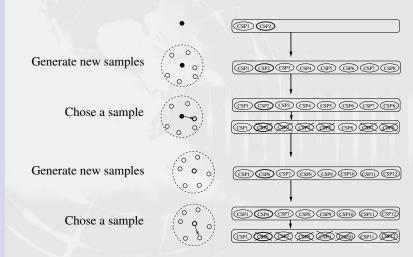

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Search Trees Reduction fonction

Conclusion and future works

Search Tree



Tony Lambert

- Solving CSF
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Search Trees Reduction fonctions

Conclusion and future works

Example : Local Search

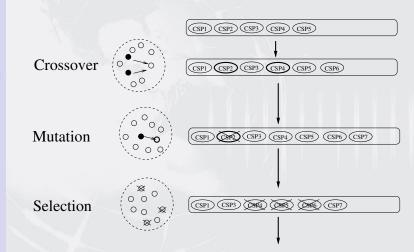
Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS


Theoretical model for hybridization CP + GA

To an uniform framework CP -GA + LS

Search Trees Reduction fonctions

Conclusion and future works

Example : Genetic algorithms

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Search Trees Reduction fonctions

Conclusion and future works

Idea 4 : break up methods

Basic components

- reducing is a search component
- splitting is a search component
- generating a neighborhood is a search component
- moving to sample is a search component

Basic behaviours

- splitting and generating a neighborhood
- reducing, selecting and moving to sample

Tony Lambert

Solving CSI

Hybrid solving : need a framework

Integrate split in G

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS Search Trees Reduction fonctions

Conclusion and future works

Basic fonctions

Sampling S: $\mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$ $\rightarrow \mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$ $\{\phi_1,\ldots,\phi_n\}\mapsto\{\phi_1,\ldots,\phi_n,\phi_{n+1}\}$ s.t. $\exists \phi_i$ with $\phi_i \sqsubseteq \phi_{n+1}$ Reducing \mathcal{R} : $\mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$ $\rightarrow \mathcal{P}(\langle X, C, \mathcal{P}(D_1) \times \cdots \times \mathcal{P}(D_n) \rangle)$ $\{\phi_1,\ldots,\phi_i,\ldots,\phi_n\}\mapsto\{\phi_1,\ldots,\phi_i',\ldots,\phi_n\}$ Where $\phi'_i = \emptyset$ or $\phi = \langle X, C, D_i \rangle$ and $\phi' = \langle X, C, D'_i \rangle$ s.t. $D'_i \subseteq D_i$.

Tony Lambert

Solving CS

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS Search Trees Beduction functions

Conclusion and future works

Reduction functions (1)

Domain reduction (DR)

$$\{\phi_1,\ldots,\phi_i,\ldots,\phi_n\} \to {}^{DR} \{\phi_1,\ldots,\phi_i',\ldots,\phi_n\}$$

Where $DR = \mathcal{R}^m$ with m > 0

Split (SP)

$$\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \to {}^{SP} \{\phi_1, \dots, \phi_i^1, \dots, \phi_i^m, \dots, \phi_n\}$$

Where $SP = S^m \mathcal{R}$

Local Search (LS)

$$\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \to {}^{LS} \{\phi_1, \dots, \phi'_i, \dots, \phi_n\}$$

Where $LS = S^m \mathcal{R}^{m-1}$

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS Search Trees Beduction fonctions

Conclusion and future works

Reduction functions (2) Genetic Algorithms

Crossover

$$\{\phi_1,\ldots,\phi_n\} \rightarrow {}^{CR} \{\phi_1,\ldots,\phi_n,\phi_{n+1}\}$$

Where CR = S

Mutation

$$\{\phi_1, \dots, \phi_i, \dots, \phi_n\} \rightarrow^{MU} \{\phi_1, \dots, \phi'_i, \dots, \phi_n\}$$

Where $MU = S\mathcal{R}$

Selection

$$\{\phi_1,\ldots,\phi_n\} \to {}^{SE} \{\phi_1,\ldots,\phi'_n\}$$

Where $SE = \mathcal{R}^m$.

Tony Lambert

- Solving CSF
- Hybrid solving : need a framework
- Integrate split in G
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Search Trees Beduction fonctions

Conclusion and future works

Properties

- a strategy is a sequence of words ∈ {*DR*, *SP*, *LS*, *SE*, *CR*, *MU*}
- is it finite sequences?
- need conditions to avoid loops

Tony Lambert

- Solving CS
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS

Conclusion and future works

Assessment Future

Solving CSP

- 2 Hybrid solving sneed a framework
- 3 Integrate split in GI
 - Theoretical model for hybridization CP + LS
 - Theoretical model for hybridization CP + GA
 - To an uniform framework CP + GA + LS
 - Conclusion and future works

Tony Lambert

- Solving CSF
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works
- Assessment Future

Conclusion

- A generic model for hybridizing complete (CP) and incomplete (LS and GA) methods
- Implementation of modules working on the same structure
- Complementarity of methods : hybridization

Tony Lambert

- Solving CSF
- Hybrid solving : need a framework
- Integrate split in GI
- Theoretical model for hybridization CP + LS
- Theoretical model for hybridization CP + GA
- To an uniform framework CP + GA + LS
- Conclusion and future works Assessment
- Future

Future

- synergies between :
 - complete + incomplete methods,
 - CP + AI + OR + ...
- learning strategies, rules based system with a language
- providing more tools in a generic environment
- Design of strategies

Tony Lambert

Solving CSF

Hybrid solving : need a framework

Integrate split in GI

Theoretical model for hybridization CP + LS

Theoretical model for hybridization CP + GA

To an uniform framework CP + GA + LS

Conclusion and future works Assessment

Hybridization of complete and incomplete methods to solve CSP

Tony Lambert

LERIA, Angers, France

LINA, Nantes, France

October 27th, 2006

Rapporteurs :

Examinateurs :

Directeurs de thèse :

François FAGES Bertrand NEVEU, Steven PRESTWICH, Jin-Kao HAO, Éric MONFROY, Frédéric SAUBION, Directeur de Recherche, INRIA Rocquencourt Ingénieur en Chef des Ponts et Chaussées, HDR Associate Professor, University College Cork Professeur à l'Université d'Angers Professeur à l'Université d'Angers