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Abstract. In this paper, we are concerned with the design of a hybrid
resolution framework. We develop a theoretical model based on chaotic
iterations in which hybrid resolution can be achieved as the computation
of a fixpoint of elementary functions. These functions correspond to basic
resolution techniques and their applications can easily be parameterized
by different search strategies. This framework is used for the hybridiza-
tion of local search and constraint propagation, and for the integration
of genetic algorithms and constraint propagation. Our prototype imple-
mentation gave experimental results showing the interest of the model
to design such hybridizations.

1 Introduction

The resolution of constraint satisfaction problems (CSP) appears nowadays as a
very active and growing research area. Indeed, constraint modeling allows both
scientists and practitioners to handle various industrial or academic applications
(e.g., scheduling, timetabling, boolean satisfiability, ...). In this context, CSP are
basically represented by a set of decision variables and a set of constraints among
these variables. The purpose of a resolution process is therefore to assign a value
to each variable such that the constraints are satisfied. We focus here on discrete
CSP in which variables take their values over finite sets of integers. Discrete CSP
are widely used to model combinatorial problems, and, by extension, combinato-
rial optimization problems, where the purpose is to find a solution of the problem
which optimizes (minimizes or maximizes) a given criterion, usually encoded by
an objective function.

The resolution of CSP involves many different techniques issued from dif-
ferent scientific communities: computer science, operation research or applied
mathematics. Therefore, the principles and purposes of the proposed resolution
approaches are very diverse. But, one may classified these methods in two fam-
ilies, which differ on a fundamental aspect of the resolution: complete methods
whose purpose is to provide the whole set of solutions and incomplete methods
which aim at finding one solution. On the one hand, complete methods, thanks
to an exhaustive exploration of the search space, are able to demonstrate that a
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given problem is not satisfiable while incomplete methods will be ineffective in
that case. On the other hand, incomplete methods, which explore only some parts
of the search space with respect to specific heuristics, are often more efficient
to obtain a solution and, moreover, for large instances with huge search space
they appear as the only usable methods since resolution becomes intractable for
complete methods.

A common idea to get more efficient and robust algorithms consists in com-
bining several resolution paradigms in order to take advantage of their respective
assets. Such combinations are now more and more studied in the constraint pro-
gramming community [21,30,31,32].

Complete solvers usually build a search tree by applying domain reduction,
splitting and enumeration. Local consistency mechanisms [24,27] allow the algo-
rithms to prune the search space by deleting inconsistent values from variables
domains. Such solvers have been embedded in constraint programming languages
(Chip [2], Ilog Solver [19], CHOCO [22], ...) which provide a general framework
for constraint modeling and resolution. Unfortunately, this approach requires an
important computational effort and therefore encounters some difficulties with
large scale problems. These performances can be improved by adding more spe-
cific techniques such as efficient constraint propagation algorithms, global con-
straints, ... We refer the reader to [5,12,25,9] for an introduction to constraint
programming.

Incomplete methods mainly rely on the use of heuristics providing a more
efficient exploration of interesting areas of the search space in order to find some
solutions. Unfortunately, these approaches do not ensure to collect all the solu-
tions nor to detect inconsistency. This class of methods, known as metaheuristics,
covers a very large panel of resolution paradigms from evolutionary algorithms
to local search techniques. We refer the reader to [1,29,18] for an overview of
these different algorithms and their applications to combinatorial optimization
problems. [11] presents an overview of possible uses of local search in constraint
programming.

Due to their different algorithmic process, these approaches often differ in
their representation of the search space and in the benefit they get from the
structure of the problem. Therefore, hybridizations of these techniques have of-
ten been tackled through heterogeneous combinations of coexisting resolution
processes, with a master-slave like management, and are often related to specific
problems or class of problems. Such designs lead to intricate solvers whose be-
havior is sometimes hard to analyze and which offer few flexibility in order to
handle other problems.

Our purpose is to present in this paper a general hybridization framework in
order to combine usual complete constraint programming resolution techniques,
namely constraint propagation and splitting, together with metaheuristics opti-
mization techniques, namely local search and genetic algorithms. This framework
is based on the original mathematical framework proposed by K.R. Apt in [4].
In this framework, basic resolution processes are abstracted by functions over
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an ordered structure. This allows us to consider the different resolution agents
at a same level and to study more precisely various hybridization strategies.

In this paper, we first focus on hybridization of constraint propagation tech-
niques (CP) and local search (LS) for constraint satisfaction problems, based on
preliminary results [28,23], and then we present a new hybridization of CP and
genetic algorithms (GA) for constraint optimization problems. As mentioned
above, the main difference between these two classes of problems will consist
of different evaluation or fitness function which have to take into account the
satisfaction problem (minimization of the number of violated constraint) and
eventually an optimization criterion.

This paper is organized as follows. In Section 2 we recall the basic notions
related to CSPs, to complete methods (more especially constraint propagation
based methods) and incomplete methods (local search and genetic algorithms)
for solving CSPs. In Section 3, we present the uniform computational framework
that we extend later for hybridization of CP and LS (Section 4) and hybridiza-
tion of CP and GA (Section 5). Section 6 shows some experimental results of
hybridization, obtained with our generic constraint system. Finally, we conclude
and propose some perspectives in Section 7.

2 Constraint Satisfaction Problems

In this section, we first recall the basic notions related to Constraint Satisfaction
Problems (CSP) [34]. We describe then, three important resolution approaches
that we will use in our hybridization framework: complete resolution techniques
based on constraint propagation, local search methods, and genetic algorithms.

A CSP is a tuple (X,D,C) where X = {x1, · · · , xn} is a set of variables that
takes their values in their respective domains D1, · · · , Dn. A constraint c ∈ C is
a relation c ⊆ D1 × · · · ×Dn. D denotes the Cartesian product of D1 × · · · ×Dn

and C the union of its constraints.
A tuple d ∈ D is a solution of a CSP (X,D,C) if and only if ∀c ∈ C, d ∈ c.
Note that, without any loss of generality, we consider that each constraint

is over all the variables x1, . . . , xn. However, one can consider constraints over
some of the xi. Then, the notion of scheme [4,3] or projections can be used to
denote sequences of variables.

2.1 Solving CSP with Complete Resolution Techniques

Complete resolution techniques generally perform a systematic exploration of
the search space which obviously corresponds to the set of possible tuples D.
To avoid and reduce the combinatorial grow up of this extensive exploration,
these methods use particular techniques to prune the search space. Constraint
propagation, one of the most popular of these pruning techniques, is based on
local consistency properties. A local consistency (e.g., [24,27]) is a property of
the constraints and variables which is used by the search mechanisms to delete
values from variables domains which violate constraints and thus, cannot lead
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to solutions. There are several levels of local consistencies that consider one or
several constraints at a time: we may mention node consistency and arc consis-
tency [24] as famous examples of local consistencies.

But constraint propagation is not sufficient for fully defining a complete solver
and split techniques are added to obtain a complete search algorithm. Constraint
propagation consists in examining a subset C′ of C (generally C′ is restricted to
one constraint) to delete some inconsistent values (from a local consistency point
of view) of the domains of variables appearing in C′. These domain reductions
are then used to reduce variables appearing in C \ C′. Hence, reductions are
propagated to the entire CSP. When no more propagation is possible and the
solutions are not reached, the CSP is split into sub-CSPs on which propagation
is applied again, and so on until the solutions are reached. Generally, the domain
of a variable is split into two sub-domains leading to two sub-CSPs. One of the
most popular strategy of splitting is enumeration that consists in restricting one
of the sub-domain to one value, the other sub-domain being the initial domain
without this value.

solve(CSP):
while not solved do

constraint propagation
if not solved

then split
search

endif
endwhile

Fig. 1. A simple constraint solving algorithm

Figure 1 shows a simple but generic solve algorithm based on constraint
propagation. The “search” function consists in calls to the solve function: search
manages the sub-CSPs created by split. Usual search is depth or breadth first
search. “solved” is a Boolean that is set to true when the CSP is found incon-
sistent, or when the wish of the user is reached: one solution, all solutions, or an
optimum solution have been computed.

2.2 Solving CSP with Local Search

Local search techniques usually aim at solving optimization problems and have
been widely used for combinatorial problems [1,29,18]. In the particular context
of constraint satisfaction, these methods are applied in order to minimize the
number of violated constraints and thus to find a solution of the CSP. A local
search algorithm, starting from a given configuration, explores the search space
by a sequence of moves. At each iteration, the next move corresponds to the
choice of one of the so-called neighbors of the current state. This neighborhood
often corresponds to small changes of the current configuration. Moves are guided
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by a fitness function which evaluates their benefit from the optimization point
of view, in order to reach a local optimum. In the next sections, we attempt to
generalize the definition of local search.

For the resolution of a CSP (X,D,C), the search space can be usually defined
as the set of possible tuples of D = D1 × · · · × Dn and the neighborhood is a
mapping N : D → 2D. This neighborhood function defines indeed possible moves
and therefore fully defines the exploration landscape. The fitness (or evaluation)
function eval is related to the notion of solution and can be defined as the
number of constraints c such that d �∈ c (d being a tuple from D).

As mentioned above, in the context of constraint satisfaction problems, the
evaluation function corresponds to the minimization of the number of violated
constraint. Therefore, given a configuration d ∈ D, representing an assignment,
a basic local search move can either lead to an increase of the number of satisfied
constraints (i.e., choose d′ ∈ N (d) such that eval(d′) < eval(d)) or to any other
configuration which does not improve the evaluation function. These two possible
steps can be interpreted as intensification or diversification of the search and local
search algorithms are often based on the management of these basic heuristics
by introducing specific control features. Therefore, a local search algorithm can
be considered as a sequence of moves on a structure ordered according to the
evaluation function.

2.3 Genetic Algorithms

Evolutionary algorithms are mainly based on the notion of adaptation of a pop-
ulation of individuals to a criterion using evolution operators like crossover [15].

Based on the principle of natural selection, Genetic Algorithms [17,20] have
been quite successfully applied to combinatorial problems such as scheduling or
transportation problems. The key principle of this approach states that, species
evolve through adaptations to a changing environment and that the gained
knowledge is embedded in the structure of the population and its members,
encoded in their chromosomes. If individuals are considered as potential solu-
tions to a given problem, applying a genetic algorithm consists in generating
better and better individuals with respect to the problem by selecting, crossing,
and mutating them. This approach reveals very useful for problems with huge
search spaces. We had to adapt some basic techniques and slightly modify some
definitions to fit our context but we refer the reader to [26] for a survey.

A genetic algorithm consists of the following components:

– a representation of the potential solutions: in most cases, individuals will be
strings of bits representing its genes,

– a way to create an initial population,
– an evaluation function eval: the evaluation function rates each potential

solution with respect to the given problem,
– genetic operators that define the composition of the children: two differ-

ent operators will be considered: Crossover allows to generate new indi-
viduals(the offsprings) by crossing individuals of the current population
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(the parents), Mutation arbitrarily alters one or more genes of a selected
individual,

– parameters: population size psize and probabilities of crossover pc and mu-
tation pm.

In the context of GA, for the resolution of a given CSP (X,D,C), the search
space can be usually defined with the set of tuples D = D1 × · · · × Dn. We
consider a populations g, which is a subset of D, such that its cardinality is i.
An element s ∈ g is an individual and represents a potential solution to the
problem.

Here, we will use the hybridization CP+GA in the context of constraint
optimization problems. Therefore, evaluation functions (related to previous eval
function but extended to optimization problems) provide information about the
quality of an individual and so, of a population. Thus, these functions have to
handle both the constraints of the problem and the optimization criterion.

A tuple in D is evaluated on an ordered set E whose lower bound corre-
sponds indeed to the evaluation of an optimal solution. Therefore a fitness func-
tion evalind:D → E is such that evalind(s) takes into account the number of
unsatisfied constraints and the optimization criterion (abstraction of the ob-
jective function) for an individual s. We consider that E is ordered such that
if s is a feasible solution (i.e. all constraints are satisfied) then evalind(s) is
restricted to its optimization evaluation. We denote s <eval s

′ the fact that
evalind(s) <E evalind(s′). When solving optimization problems we have to iso-
late the best solution yet found. Thus, s is the current solution for a population
g if ∀s′ ∈ g, s ≤eval s′.

We extend this notion of fitness to population by evalgen: 2D → F such that
evalgen(g) represents the evaluation of the individuals of the population g. The
set F is ordered such that: g is a population solution if it contains an individual
solution (i.e at least one of the components of g has an evaluation restricted to
its optimization evaluation).

This evalgen(g) function, can represent for example, the sum of all the fitness
of each individual, the sum of squares, or can be restricted to the best individual
in the population. Furthermore, we denote g <eval g′ the fact that evalgen(g) <F
evalgen(g′).

3 A Uniform Computational Framework

As described in the previous section, different techniques may be used to solve
CSP (and many others which are not recalled here since they are out of the scope
of this paper). Our purpose is to integrate the various involved computation
processes in a uniform description framework. Since we want to combine all
our resolution technique at a same level, the chaotic iterations model of K.R.
Apt particularly fits our requirements. Therefore, the purpose of this section is
to formalize the general computation scheme presented in Section 2.1, and to
prepare it for hybridization of techniques.
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In [4,3] K.R. Apt proposed a general theoretical framework for modeling
constraint propagation. In this context, domain reduction corresponds to the
computation of a fixpoint of a set of functions over a partially ordered set.

These domain reduction functions are monotonic and inflationary functions;
they abstract the notion of constraint.

Example 1 (Domain reduction functions). Consider three Boolean variables X,
Y , and Z and the Boolean constraint and(X,Y, Z) such that and(X,Y, Z) rep-
resents the Boolean relation X ∧ Y = Z. An example of reduction function for
the constraint and(X,Y, Z) can be defined by: if the domain of Z is {1}, then
the domains of X and Y must be reduced to {1}.

Here is another example of reduction functions for linear equalities over in-
teger numbers:

if x < y, x ∈ [lx..rx], y ∈ [ly..ry ]
we can reduce the domain of x and y as follows:
x ∈ [lx..min(rx, ry − 1)], y ∈ [max(ly, lx + 1)..ry ]

The computation of the least common fixpoint of a set of functions F can
be achieved by the Generic Iteration algorithm (GI) described in Figure 2. In
the GI algorithm, G represents the current set of functions still to be applied
(G ⊆ F ), d is a partially ordered set (the domains in case of CSP).

GI: Generic Iteration Algorithm

d :=⊥;
G := F ;
While G �= ∅ do

choose g ∈ G;
G := G − {g};
G := G ∪ update(G, g, d);
d := g(d);

endwhile
where for all G, g, d, the set of functions update(G, g, d) from F is such that:

– {f ∈ F − G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G, g, d).
– g(d) = d implies that update(G, g, d) = ∅.
– g(g(d)) �= g(d) implies that g ∈ update(G, g, d)

Fig. 2. The Generic Iteration Algorithm

Suppose that all functions in F are inflationary (x � f(x) for all x) and
monotonic (x � y implies f(x) � f(y) for all x, y) and that (D,�) is finite.
Then, every execution of the GI algorithm terminates and computes in d the
least common fixpoint of the functions from F (see [4]).

Note that in the following we consider only partial orderings.
Constraint propagation is now achieved by instantiating and “feeding” the

GI algorithm:
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– the � partial ordering is instantiated by ⊇, the usual set inclusion,
– d :=⊥ corresponds to d := D1 × . . . × Dn, the Cartesian product of the

domains of the variables from the initial CSP to be solved,
– F is a set of domain reduction functions which abstract the constraints in

order to reduce domains of variables.

This algorithm allows us to compute the smallest box (i.e., Cartesian product
of domains) with respect to the given domain reduction functions that contains
the solutions of the initial CSP.

At this point, as shown in Figure 1, the exploration of the reduced domains
is continued by interleaving splitting and again propagation phases.

In order to obtain a more uniform and generic framework, our purpose is to
integrate the splitting process as a reduction function inside the GI algorithm.
This is motivated by the fact that we want to manage constraint propagation,
split and local search (respectively genetic algorithms) at the same level. To this
end, we will extend the notion of CSP to sampled CSP (respectively CSP with
genetic factor) on which an other type of reduction functions will be applied to
mimic basic operations of local search algorithms (respectively basic operations
of genetic algorithms).

Therefore, we have to introduce new functions in the generic iteration al-
gorithm including splitting operators and local search strategies (respectively a
genetic algorithm process). Then, these search methods can be viewed as the
computation of a fixpoint of a set of functions on an ordered set. But, these
new operators require also a new computation structure and the first step of our
work consists in defining this main structure.

4 CP+LS

Extending the framework described above (Section 3), we propose here a com-
putational structure taking into account both constraint programming and local
search basic resolution processes. CSPs and search paths are embedded in this
new computation structure. Some reduction functions that achieve constraint
propagation, split, and local search are then introduced to compute over this
structure.

4.1 Sampling the Search Space

Domain reductions and splits apply on domains of values: they transform Carte-
sian product of the domains. Local search acts on a different structure which
usually corresponds to points of the search space. Here, we propose a more gen-
eral and abstract definition based on the notion of sample.

Definition 1 (Sample). Consider a CSP (X,D,C). A sample function ε is a
function ε : D → 2D. By extension, ε(D) denotes the set

⋃
d∈D ε(d).

Generally, ε(d) is restricted to d and the set of samples is thus the search space
D (ε(D) = D). However, ε(d) can also be defined as a scatter of tuples around d,



146 E. Monfroy, F. Saubion, and T. Lambert

an approximation covering d, or a box covering d (e.g., for continuous domains).
Moreover, it is reasonable to impose that ε(D) contains all the solutions. Indeed,
the search space D is abstracted by ε(D) to be used by LS.

In this context, a local search can be fully defined by:

– a neighborhood function on ε(D) which computes the neighbors (i.e., a set
of samples) for each sample of ε(D);

– and the set of local search paths. Each path is composed of a sequence of
visited samples and represents moves from neighbors to neighbors.

Given a neighborhood function N : ε(D) → 2ε(D), we define the set of possible
local search paths as LSD =

⋃

i>0

{p = (s1, · · · , si) ∈ ε(D)i | ∀j, 1 ≤ j < i− 1, sj+1 ∈ N (sj) and s1 ∈ ε(D)}

The fundamental property of local search relies on its exploration based on the
neighborhood relation.

From a practical point of view, a local search is limited to finite paths with
respect to a stopping criterion: this can be a fixed maximum number of iterations
(i.e., the length of the path) or, in our context of CSP resolution, the fact that
a solution has been reached.

For this concern, according to Section 2.2, we consider an evaluation function
eval: ε(D) → IN such that eval(s) represents the number of constraints unsat-
isfied by the sample s. Moreover, we impose that eval(s) is equal to 0 iff s is a
solution. We denote s <eval s′ the fact that eval(s) < eval(s′).

Therefore, from a LS point of view, a result is either a search path leading
to a solution or a search path of a maximum given size. According to this fact,
we define an order on local search paths as follows:

Definition 2 (local search ordering). We consider an order �ls on LSD
defined by:

(s1, . . . , sn) �ls (s1, . . . , sn)
(s′1, . . . , s′m) �ls (s1, . . . , sn) if n > m and ∀j, 1 ≤ j ≤ m, eval(s′j) �= 0
and ∀i, 1 ≤ i ≤ n, eval(si) �= 0

(s′1, . . . , s
′
m) �ls (s1, . . . , sn) if eval(sn) = 0, ∀i, 1 ≤ i ≤ n− 1, eval(si) �= 0

and ∀j, 1 ≤ j ≤ m, eval(s′j) �= 0

The following example illustrates the notion of results from a LS process.

Example 2 (LS paths). Consider p1 = (a, b), p2 = (a, c) and p3 = (b) three
elements of LSD such that eval(b) = 0 (i.e., b is a solution). Then, these three
paths correspond to possible results of a local search of size 2, they are not
comparable with respect to Definition 2.

4.2 Computation Structure

We can now define the structure required for the hybridization of local search
and constraint solving. To this end, we instantiate the abstract framework of
K.R. Apt described in Section 2.1.
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Definition 3 (Sampled CSP). A sampled CSP (sCSP) is defined by a triple
(D,C, p), a sample function ε, and a local search ordering �ls where

– D = D1 × ...×Dn

– ∀c ∈ C, c ⊆ D1 × . . .×Dn

– p ∈ LSD
Note that, in our definition, the local search path p should be included in the

box defined by ε(D). We denote SCSP the set of sCSP . We can now define an
ordering relation on the sampled structure (SCSP,�).

Definition 4 (Order over sampled CSPs). Given two sCSPs ψ = (D,C, p)
and ψ′ = (D′, C, p′),

ψ � ψ′ iff D′ ⊆ D or (D′ = D and p �ls p′).
This relation is extended on 2SCSP as follows:

{φ1, . . . , φk} � {ψ1, . . . , ψl} iff ∀φi, (∃ψj , φi � ψj and � ∃ψj , ψj � φi)

where i ∈ [1..k], j ∈ [1..l].

Note that this partial ordering on sCSPs could also be extended by consid-
ering an order on constraints; this would enable constraint simplifications. But
this is out of the scope of our hybridization.

We denote ΣCSP the set 2SCSP which constitutes the key set of our com-
putation structure. We denote σCSP an element of ΣCSP . A σCSP is thus
a set of sCSPs. As in [4], we define the least element ⊥ as {(D,C, p)}, i.e., the
initial σCSP to be solved.

4.3 Solutions

Since our framework is dedicated to CSP solving, we must define precisely the
notion of solution accordingly to the previous computation structure. These
notions are well defined for complete methods and incomplete methods.

From the complete resolution point of view, a solution of a CSP is a tuple
from the search space which satisfies all the constraints. For local search, the
notion of solution is related to the evaluation function eval which defines a
solution as an element s of ε(D) such that eval(s) = 0.

Definition 5 (Solutions). Given a sCSP ψ = (D,C, p), the set of solutions of
ψ is defined by:

– for constraint propagation (CP) based solvers:

SolD(ψ) = {d ∈ D|∀c ∈ C, d ∈ c}
– for local search (LS):

SolLSD (ψ) = {(s1, · · · , sn) ∈ LSD | eval(sn) = 0}
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– for a LS/CP hybrid solver:

Sol(ψ) = {(d, C, p)|d ∈ SolD(ψ) or p ∈ SolLSD (ψ)}

This notion is extended to any σCSP Ψ by:

Sol(Ψ) =
⋃

ψ∈Ψ
Sol(ψ)

4.4 Reduction Functions Definitions and Properties

The computation structure ΣCSP has been defined for integrating CP and
LS and we have now to define our hybrid functions which will be used in the
GI algorithm. Given a σCSP Ψ = {ψ1, · · · , ψn} of ΣCSP , we need to define
functions on Ψ which correspond to domain reduction, split, and local search.
These functions may apply on several sCSPs ψi of Ψ , and for each ψi on some of
its components. Since we consider here finite initial CSPs, note that our structure
is a finite partial ordering.

Definition 6 (Domain reduction function). A domain reduction function
red is a function:

red:ΣCSP → ΣCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

such that ∀i ∈ [1 · · ·n]:

– either ψi = ψ′
i

– or ψi = (D,C, p), ψ′
i = (D′, C, p′) and D ⊇ D′ and SolD(ψi) = SolD(ψ′

i).

Note that this definition insures that {ψ1, · · · , ψn} � red({ψ1, · · · , ψn}) and
that the function is inflationary and monotonic on (ΣCSP,�). Note also that by
definition p′ ∈ LSD′ . This definition allows one to specify a function that reduces
several domains of several sCSPs of a σCSP at the same time. From a constraint
programming point of view, a reduction function preserves the solution set of
the initial CSP: no solution of the initial CSP is lost by a domain reduction
function. This is also the case for domain splitting as defined below.

Definition 7 (Domain splitting). A domain splitting function sp on ΣCSP
is a function such that for all Ψ = {ψ1, . . . , ψn} ∈ ΣCSP :

a. sp(Ψ) = {ψ′
1, . . . , ψ

′
m} with n ≤ m,

b. ∀i ∈ [1..n],
• either ∃j ∈ [1..m] such that ψi = ψ′

j

• or there exist ψ′
j1
, . . . , ψ′

jh
, j1, . . . , jh ∈ [1..m] such that

SolD(ψi) =
⋃

k=1..h

SolD(ψ′
jk

)
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c. and, ∀j ∈ [1..m],
• either ∃i ∈ [1..n] such that ψi = ψ′

j

• or ψ′
j = (D′, C, p′) and there exists ψi = (D,C, p), i ∈ [1..n] such that

D ⊃ D′.

Conditions a. and b. ensure that some sCSPs have been split into sub-sCSPs
by splitting some of their domains (one or several variable domains) into smaller
domains without discarding solutions (defined by the union of solutions of the
ψi). Condition c. ensures that the search space does not grow: every domain
of the sCSPs composing Ψ ′ is included in one of the domain of some sCSP
composing Ψ . Note that the domain of several variables of several sCSPs can be
split at the same time.

Definition 8 (Local Search). A local search function λN is a function

λN :ΣCSP → ΣCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

where

– N is the maximum number of consecutive moves
– ∀i ∈ [1..n]

• either ψi=ψ′
i

• or ψi = (D,C, p) and ψ′
i = (D,C, p′) with p = (s1, · · · , sk) and p′ =

(s1, · · · , sk, sk+1) such that sk+1 ∈ N (sk) ∩D and k + 1 ≤ N .

The parameter N represents the maximum length of a local search path,
i.e., the number of moves allowed in a usual local search process. A local search
function may try to improve the sample of one or several sCSPs at once. Even
when λN tries to reduce ψi, note that ψi=ψ′

i may happen when:

1. p ∈ SolLSD (ψ): the last sample sn of the current local search path cannot
be improved using λN ,

2. the length n of the search path is such that n = N : the maximum allowed
number of moves has been reached,

3. λN is the identity function on ψi, i.e., λN does not try to improve the local
search path of the sCSP ψi. This might happen when no possible move can
be performed (e.g., a descent algorithm has reached a local optimum or all
neighbors are tabu in a tabu search algorithm [14]).

4.5 σCSP s Resolution

For the complete solving of a σCSP {(D1 × . . . ×Dn, C, p)} the GI algorithm
must now be instantiated as follows:

– the � ordering is instantiated by the ordering given in Definition 4,
– d :=⊥ corresponds to d := {(D1 × . . .×Dn, C, p)},



150 E. Monfroy, F. Saubion, and T. Lambert

– F is a set of given monotonic and inflationary functions as defined in Sec-
tion 4.4: domain reduction functions (extensions of common domain reduc-
tion functions for CSPs), domain splitting functions (usual split mechanisms
integrated as reduction functions), and local search functions (e.g., functions
for descent, tabu search, ...).

We now propose an instantiation of the function schemes presented in the
previous section. From an operational point of view, reduction functions have to
be applied on some selected sCSP s of a given σCSP . More practically, we build
the functions on sCSPs and then extend them on σCSP s. Thus, a function on
ΣCSP will be driven by an operator selecting the sCSPs of a σCSP .

We now define these selection operators. Given a selection function select:
A→ 2B let us consider a function fselect:A→ C such that fselect(x) = g(y), y ∈
select(x) where g:B → C. Therefore, fselect can be viewed as a non deterministic
function. Formally, we may associate to any function fselect a family of determin-
istic functions (f i)i>0 such that ∀x ∈ A, ∀y ∈ select(x), ∃k > 0, fk(x) = g(y). If
we consider finite sets A and B then this family is also finite.

Indeed, each σCSP that can result from the application of some functions on
the initial σCSP requires all reduction functions (defined for the initial σCSP )
to model the different possible executions of the resolution process. In other
terms, consider an sCSP ψi of a σCSP Ψ ; a set F ′ of functions can apply on
ψi through Ψ (through the sCSP selection process). If a new sCSP ψj can be
created (e.g., by split), then the functions of F ′ are also required to be applied
on ψj through Ψ (again, through the sCSP selection process). However, ψj will
may be not be created. Note that in theory, it is necessary to consider all possible
σCSP (and thus, all possible sets of all possible sCSP); however, in practice,
only required functions are fed in the GI algorithm, induced by the σCSP under
consideration in the resolution process.

We first define functions on SCSP with respect to selection functions to
select the domains on which the functions apply. In order to extend operations
on SCSP to ΣCSP , we introduce a selection process which allows us to extract
particular sCSP s of a given σCSP (see Figure 3).

Ψ = {ψ1, . . . , ψk, . . . , ψn}
Ψ ∈ ΣCSP

ψ1 . . .. . . ψk ψn

Dl DmD1 . . .D1 . . .

Dl

SelD(ψk) = Dl

Selψ(Ψ) = {ψk}

ψk = ((D1, . . . , Dl, . . . , Dm), C, p)
ψk ∈ SCSP

Fig. 3. Selection functions
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Let us consider a domain selection function SelD:SCSP → 2D and a sCSP
selection function Selψ:ΣSCSP → ΣSCSP .

Domain Reduction. We may first define a domain reduction operator on a
single sCSP as:

redSelD : SCSP → SCSP
ψ = (D,C, p) �→ (D′, C, p′)

such that

1. D = D1 × · · · ×Dn, D
′ = D′

1 × · · · ×D′
n and ∀i, 1 ≤ i ≤ n

– Di �∈ SelD(ψ) ⇒ D′
i = Di

– Di ∈ SelD(ψ) ⇒ D′
i ⊆ Di

2. p′ = p if p ∈ LSD′ otherwise p′ is set to any sample chosen in ε(D′)

Note that Condition 2. insures that the local search path associated to the
sCSP stays in ε(D′). Note that we could keep p′ = (si) where si is the latest
element of p which belongs to D′ or we could keep a suitable sub-path of p. We
have chosen to model here a restart from a randomly chosen sample after each
reduction or split. The function redSelD is extended to ΣCSP as:

redSelψ ,SelD : ΣCSP → ΣCSP
Ψ �→ (Ψ \ Selψ(Ψ))

⋃
ψ∈Selψ(Ψ) red

SelD (ψ)

Split. We first define a split operator on a single sCSP as follows:

spSelDk : SCSP → ΣCSP
ψ �→ Ψ ′

with ψ = (D1 × . . .×Dh × . . .×Dn, C, p) where {Dh} = SelD(ψ) and
Ψ ′ = {(D1 × . . .×Dh1 × . . .×Dn, C, p1), · · · , (D1 × . . .×Dhk × . . .×Dn, C, pk)}

such that

1. Dh =
k⋃

i=1

Dhi

2. for all i ∈ [1..k], pi = p if p ∈ LS(D1×···×Dhi×···×Dn) otherwise, pi is set to
any sample chosen in ε(D1 × . . .×Dhi × . . .×Dn).

For the sake of readability we present a function that splits only one domain
of the sCSP. But this can obviously be extended to split several domains at once.
The last condition is needed to comply with the sCSP definition: it corresponds
to the fact that, informally, the samples associated to any sCSP belong to the
box induced by their domains. The function is extended to ΣCSP as follows:

sp
Selψ,SelD
k : ΣCSP → ΣCSP

Ψ �→ (Ψ \ Selψ(Ψ))
⋃
ψ∈Selψ(Ψ) sp

SelD
k (ψ)
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Local Search. As mentioned above, local search is viewed as the definition of
a partial ordering �ls; this order is then used to define the ordering � on our
hybrid structure ΣCSP . The components that remain to be defined are: 1) the
strategy to compute a local search path p′ of length n + 1 from a local search
path p of length n, and 2) the stop criterion which is commonly based on a fixed
limited number of moves and, in our particular context of CSP resolution, the
notion of computed solution.

First, we define a local search operator on SCSP as a function strat:
SCSP → 2ε(D). This function specifies the choice strategy of a given local
search heuristics for moving from a sample to one of its neighbors.

λstratN : SCSP → SCSP
ψ �→ ψ′

where

– N is the maximum allowed number of moves
– ψ = (C,D, p) and ψ′ = (C,D, p′) with p = (s1, · · · , sn)

1. p′ = p if p ∈ SolLSD
2. p′ = p if n = N
3. p′ = (s1, · · · , sn, sn+1) such that sn+1 = strat(ψ) otherwise

Using this schema, we present here some examples of well known “move”
heuristics. Consider a sCSP ψ = (D,C, (s1, · · · , sn)). Each function consists in
selecting one feasible neighbor (i.e., a sample of the neighborhood which is also
in the current reduced search space D to comply with Definition 8) of a sample:

– Random Walk: the function stratrw randomly selects one sample of the
neighborhood of the current sample

stratrw(ψ) = s s.t. s ∈ D ∩ N (sn)

– Descent: the function stratd selects a neighbor improving the current sam-
ple with respect to the fitness function

stratd(ψ) = s s.t. s ∈ D ∩N (sn) and s <eval sn

– Strict Descent: stratsd is similar to stratd but selects the best improving
neighbor; stratsd(ψ) = s s.t.

s ∈ D ∩ N (sn), s <eval sn, and ∀s′ ∈ D ∩ N (sn), s ≤eval s′
– Tabu of length l: selects the best neighbor not visited during the past l

moves; strattabul (ψ) = s s.t.

s ∈ ε(D)∩N (sn) and ∀j ∈ [n− l..n], s �= sj and ∀s′ ∈ D ∩N (sn), s ≤eval s′
Note that, again, these functions satisfy the properties (inflationary and

monotonic) required to be fed in the GI algorithm. Then, this function is ex-
tended to ΣCSP as:

λ
Selψ ,strat
N : ΣCSP → ΣCSP

Ψ �→ (Ψ \ Selψ(Ψ))
⋃
ψ∈Selψ(Ψ) λ

strat
N (ψ)
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Combination. The “choose function” of the GI algorithm now totally manages
the hybridization/combination strategy; different scheduling of functions lead to
the same result (in term of least common fixpoint), but not with the same
efficiency.

Note that in practice, we are not always interested in reaching the fixpoint
of the GI algorithm. We can also be interested in solutions such as sCSPs which
contain a solution for local search or a solution for constraint propagation. In
this case, various runs of the GI algorithm with different strategies (“choose
function”) can lead to different solutions (e.g., in case of problems with several
solutions, or several local minima).

Result of the GI Algorithm. We now compare the result of the GI algorithm
with respect to Definition 5 for solution of a σCSP .

Since we are in chaotic iteration framework (concerning orderings and func-
tions), given a σCSP Ψ and a set F of reduction functions (as defined above)
the GI algorithm computes a common least fixpoint of the functions in F . Note
that, this result is insured by the fact that our LS functions, which limit the size
of search paths, induce a finite partial ordering in our computation structure.
Clearly, this fixpoint lfp(Ψ) abstracts all the solutions of Sol(Ψ):

–
⋃

(d,C,p)∈Sol(Ψ) d ⊇ ⋃
(d,C,p)∈glfp(Ψ) d

– for all (D,C, p) ∈ Sol(Ψ) s.t. p = (s1, . . . , sn) ∈ SolLSD (Ψ) there exists a
(d, C, p′) ∈ glfp(Ψ) s.t. sn ∈ ε(d).

The first item states that all domain reduction and split functions used in
GI preserve solutions. The second item ensures that all solutions computed by
LS functions are in the fixpoint of the GI algorithm.

In practice, one can stop the GI algorithm before the fixpoint is reached.
For example, one can compute the fixpoint of the LS functions; in this case, the
search space may be reduced (and thus, the possible moves) by applying only
some of the CP functions. This corresponds to the hybrid nature of the resolution
process and the tradeoff between a complete and incomplete exploration of the
space.

5 CP+GA

In this section, we describe the hybridization of a propagation based solver and
genetic algorithms. We use the same approach as the one for local search. Thus,
we try to keep the same progress, notations, and structure for this section.

5.1 Populations

Genetic algorithms aim at generating new populations using genetic operators,
selection [6], (e.g. proportional selection [17], roulette-wheel selection [15], tour-
nament selection, linear ranking [7], ...), recombination (e.g., elitist recombina-
tion [33], multiparent recombination like [10]), and mutation.
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A new population is called an offspring and formally it is a mapping O :
2D → 2D. We define the set of possible genetic descendants, i.e., the set of
sequences of populations as follows:

GA =
⋃

k>0

{p = (g1, · · · , gk) | ∀j ∈ [1..k], gj ∈ 2D and ∀j ∈ [2..k], gj ∈ O(gj−1)}

where g1 represents the initial population and k the length of the process. Note
that, in practice, the size of th epopulation is fixed.

From a practical point of view, genetic algorithms are stopped by a criterion
which is usually a fixed maximum number of iterations. Therefore, from a GA
point of view, a result is either a population g which contains solutions or a ge-
netic process of a maximum given size. Based on a fitness function (as presented
in Section 2.3), we introduce the following order on sequences of populations of
GA:

Definition 9 (Order on sequences of populations). Consider a fitness
function eval together with its associate order. The order �ga on GA is defined
by:

(g1, . . . , gn) �ga (g′1, . . . , g
′
m) iff g′m ≤eval gn

We have now to define the computation structure on which reduction func-
tions will be applied and which includes the new component corresponding to
the introduction of GA.

5.2 Computation Structure

In order to handle the different data structures associated to each technique
of the hybrid resolution, we complete CSPs with genetic factors. Such a factor
corresponds indeed to a GA process, and optimization will be done using them.

The resolution will be achieved according to the generic algorithm recalled
in Section 2.3. We have here to define the computation structure devoted to this
hybridization CP+GA.

Definition 10 (CSP with genetic factor). A CSP with genetic factor (gcsp)
for optimization is defined by a sequence (D,C, p, f) where

– D = D1 × ...×Dn

– ∀c ∈ C, c ⊆ D1 × . . .×Dn

– p ∈ GA
– f : objective function.

GCSP denotes the set of gcsp, and ΣGCSP denotes the set 2GCSP

Note that, in the definition, the genetic algorithm process p should be in-
cluded in the search space defined by D. Recall that the objective function f is
taken into account in the eval function (see Section 2.3), and thus is also taken
into account in the ≤eval and �ga orderings (see above), and consequently in
the ordered structure (GCSP,�) that we define below.
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Definition 11 (Order on GCSP ). Given two gcsps ψ = (D,C, p, f) and ψ′ =
(D′, C, p′, f), ψ � ψ′ iff

– D′ ⊆ D

– or (D′ = D and p �ga p′).

This relation is extended on 2GCSP : {φ1; ...;φk} � {ψ1; ...;ψl}, iff

∀φi, (∃ψj , φi � ψj and � ∃ψj , ψj � φi)

where i ∈ [1..k], j ∈ [1..l].

ΣGCSP (i.e., the set 2GCSP ) constitutes the key set of our computation
structure. We use here σCSP to denote an element of ΣGCSP . The least ele-
ment ⊥ is {(D,C, p, f)}, i.e., the initial σCSP to be solved.

5.3 Solution

From the CP point of view, a solution of an gcsp ψ = (D,C, p, f) is a tuple which
satisfies all the constraints. From the GA point of view, the notion of solution
is related to the evaluation function: a solution is defined as an element s of a
population g of the sequence p such that s is the minimum (or maximum) of
the objective function with respect to all such s′ appearing in p. Given an gcsp
ψ = (D,C, p, f), these two points of view induce two sets of solutions:

– Feasible solutions: SolCP (ψ) = {d ∈ D | ∀c ∈ C, d ∈ c}
– Optimum solutions (minimization): SolGA(ψ) = {s | p = (g1, . . . , gm) and ∀i

∈ [1..m], ∀s′ ∈ gi, s ≤eval s′}.
– Optimum solutions (maximization): SolGA(ψ) = {s | p = (g1, . . . , gm) and ∀i

∈ [1..m], ∀s′ ∈ gi, s
′ ≤eval s}.

Based on this, we define the set of solutions in the hybrid model for a given
gcsp ψ as:

Sol(ψ) = SolCP (ψ) ∩ SolGA(ψ)

Hence a solution of a given gcsp is a tuple d such that d satisfies the constraints
and minimizes (respectively maximizes) the objective function. This notion of
solution is generalized to the computation structure ΣGCSP .

Definition 12. Given a σCSP Ψ = {ψ1, . . . , ψk} according to

– a minimization problem: Sol(Ψ) = Min({si} | si ∈ sol(ψi)}
– a maximization problem: Sol(Ψ) = Max({si} | si ∈ sol(ψi)}
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5.4 A Function-Based Solving Process

At this step, we have to define the reduction functions onΣGCSP . They describe
the different components of the resolution process: constraint propagation by
domain reduction and splitting, combined with genetic algorithms.

Given an element Ψ = {ψ1, · · · , ψn} of ΣGCSP , we have to apply functions
on Ψ which correspond to domain reduction, domain splitting, and genetic al-
gorithm. These functions may operate on elements ψi of Ψ , and for each ψi on
some of its components. We should note that since we consider here finite sets
as initial gcsps, the structure is a finite partial ordering.

The following definitions introduce the fundamental properties of the differ-
ent operators and their general purpose.

The definitions of a reduction function and of a split for the hybridization
CP+GA are similar to the ones of CP+LS (Definitions 6 and 7) but this time
they apply on ΣGCSP . The same remark is also valid concerning Definition 15
and Definition 8.

Definition 13 (Domain reduction function). A domain reduction function
red is a function:

red:ΣGCSP → ΣGCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

such that ∀i ∈ [1 · · ·n]:

– either ψi = ψ′
i,

– or ψi = (D,C, p, f), ψ′
i = (D′, C, p′, f) and D ⊇ D′ and Sol(ψi) = Sol(ψ′

i).

This definition ensures that {ψ1, · · · , ψn} � red({ψ1, · · · , ψn}) and that the
function is inflationary and monotonic on (ΣGCSP,�) . From a constraint pro-
gramming point of view, no solution of the initial σGCSP is lost by a domain
reduction function. This is also the case for domain splitting as defined below.

Definition 14 (Domain splitting). A domain splitting function sp on
ΣGCSP is a function such that for all Ψ = {ψ1, . . . , ψn} ∈ ΣGCSP :

a. sp(Ψ) = {ψ′
1, . . . , ψ

′
m} with n ≤ m,

b. ∀i ∈ [1..n],
• either ∃j ∈ [1..m] such that ψi = ψ′

j

• or there exist ψ′
j1 , . . . , ψ

′
jh

, j1, . . . , jh ∈ [1..m] such that

SolD(ψi) =
⋃

k=1..h

SolD(ψ′
jk)

c. and, ∀j ∈ [1..m],
• either ∃i ∈ [1..n] such that ψi = ψ′

j

• or ψ′
j = (D′, C, p′, f) and there exists ψi = (D,C, p, f), i ∈ [1..n] such

that D ⊇ D′.
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Conditions a. and b. ensure that some gcsps have been split without discard-
ing solutions. Condition c. ensures that the search space does not grow (each
new search space is included in one of the initial search space).

Finally we define genetic algorithm as a reduction function on ΣGCSP .

Definition 15 (Genetic algorithms). A genetic algorithm function ΓN is a
function:

ΓN :ΣGCSP → ΣGCSP ,
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

where N is the maximum number of consecutive offsprings, and ∀i ∈ [1..n]

– either ψi=ψ′
i

– or ψi = (D,C, p, f) and ψ′
i = (D,C, p′, f) with p = (g1, · · · , gk) and p′ =

(g1, · · · , gk, gk+1) such that
gk+1 ∈ O(gk) ∩Dm and k + 1 ≤ N , where m is the size of the population .

N is the maximum length of a genetic algorithm, i.e., the number of offsprings
allowed in a usual genetic search process. Note that ψi=ψ′

i can happen when:

1. n = N : the maximum allowed number of operations has been reached,
2. ΓN is the identity function on ψi, i.e., ΓN does not try to improve the

generation of the GCSP ψi. This might happen when no possible move can
be performed (e.g., all individuals are equal and no mutation are allowed).

We now give some properties on some possible genetic algorithm functions.

Definition 16 (elitism). A genetics algorithm is called elitist if at every step
the current best individual survives, the best solution is never lost during the
search. Formally consider a search path p = (g1, . . . , gk):

∀j ∈ [1..k − 1], if there exists s ∈ gj s.t. ∀s′ ∈ gj, s ≤eval s′, then s ∈ gj+1

Property 1 (Convergence). Suppose that the genetic algorithm is elitist. Suppose
that for every population g there is a nonzero probability P that in the next
generation the population is better:

∀s ∈ gk, ∃s′ ∈ gk+1 s.t. s′ ≤eval s

Then the fitness of the population at time t converges to the optimal value, for
t→ ∞.

Thus, with the previous properties, GA optimizes the objective function, tak-
ing its values in a search space which is becoming locally consistent using CP.
With successive constraint propagations and splits, the search space is progres-
sively restricted to feasible solution, therefore GA finds the optimum.
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5.5 σGCSP s Resolution

As in the previous section, the GI algorithm is fed with the ordering onΣGCSP ;
the least element ⊥ is {(D,C, p, f)}, i.e., the initial σGCSP to be solved; and
monotonic and inflationary functions: domain reduction, split, and genetic algo-
rithms.

Similarly to Section 4, reduction functions can first be built over GCSP
before being extended over ΣGCSP . In this case, a selection process is also
needed in order to take into account each σGCSP that could be created during
resolution. We do not detail here this process, since it is the same as for local
search hybridization.

Result of the GI Algorithm. The result of the GI algorithm can be defined
similarly as before. Given a σGCSP Ψ and a set F of reduction functions the GI
algorithm computes a common least fixpoint of the functions in F . This fixpoint
glfp(Ψ) abstracts all the solutions of Sol(Ψ):

–
⋃

(d,C,p)∈Sol(Ψ) d ⊇ ⋃
(d,C,p)∈glfp(Ψ) d

– for all (D,C, p, f) ∈ Sol(Ψ) s.t. p = (g1, . . . , gn) ∈ SolGAD (Ψ) there exists a
(d, C, p′, f) ∈ glfp(Ψ) s.t. ∃i ∈ [1..n], d ∈ gi.

The first item states that all domain reduction and split functions used in GI
preserve solutions. The second item ensures that in all sequences of populations
that are solution of the GA functions, there is a population containing a tuple
which is in the fixpoint of the GI algorithm.

6 Experimentations

In this section, hybridizations CP+LS and CP+GA are tested using our con-
straint system (developed in C++). The purpose of this section is to highlight
the benefit of our framework for hybridization and the benefit of hybrid resolu-
tion; note that our purpose is not to test a high performance implementation on
large scale benchmarks. All tests are performed on a cluster with 22 processors
running sequentially at 2.2 GHz with 1 Go of RAM each.

6.1 CP+LS for Constraint Satisfaction Problems

Problem Instances. We consider various classic CSP problems: S+M=M
(Send + More = Money), Magic Square, Langford numbers, the Zebra puzzle,
Golomb ruler, and the Uzbekian problem, issued from the CSPlib [13].

Experimental Process. Our basic functions are stored into three sets: a set
of domain reduction functions dr, a set of split functions sp, and a set of local
search functions ls. The choose function of the GI algorithm is defined as follows:
we consider a tuple (α, β, γ) such that α, β, and γ represent respectively the
percentage of reduction functions, split functions, and local search functions,
that are applied; functions are fairly selected with respect to these ratios.
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The reduction functions are defined as follows. A domain reduction corre-
sponds either to a bound consistency operator or a global constraint filtering
operator (e.g., alldifferent). A split function cuts the selected domain into two
subdomains. A local search function is a basic LS move; LS functions are then
instantiated by a tabu search strategy which selects the best neighbor not cur-
rently in a tabu list of length 10 (see Section 4.5).

In the following, we consider three types of strategies corresponding to se-
lection function of sCSP (to select one sCSP in a σCSP , i.e., Selψ function as
defined in Section 4.5), and selection function of domain (to select one domain
in a CSP , i.e., SelD function as defined in Section 4.5) for domain reduction and
split functions. Here, we do not formalize these functions, but we just describe
their strategies:

– random: Selψ selects any sCSP , and SelD selects any domain of the se-
lected sCSP .

– depth-first: Selψ selects the sCSP containing the smallest domain, and
SelD selects the smallest domain of the selected sCSP .

– LS-forward checking: forward checking consists in instantiating variables
(split by enumeration) in a given order and to prevent future conflicts by
reducing variables directly linked to the one freshly enumerated. Our LS-
forward checking strategy is similar; ls functions will apply on the sCSP
that has just been split.

– width-first: Selψ selects the sCSP containing the largest domain, and SelD
selects the largest domain of the selected sCSP .

Combining our reduction functions and the three above mentioned strategies,
we obtain three packs (one for each strategy) of sets of functions (dr, sp, and ls).

Experimental Results. The evaluation and comparison criterion corresponds
to the number of basic functions applied to reach a first solution. Such an appli-
cation of function is either a step of local search, a split, or a domain reduction
(reduction of one domain using one constraint). We focus here on small prob-
lems: thus, computation times represents less than one minute of CPU time (e.g.,
a solution for the Langford Number is found in one sec.).

Interaction between CP and LS. We study here the benefit of the hybridization
CP+LS. Using various strategies we highlight the effect of different cooperations
on solving efficiency.

We first focus on the problems Langford Number and S+M=M; the tests are
performed by increasing the percentage α of propagation from 0 to 100%. To
insure to reach a solution, we set the split ratio to β = α ∗ 0.1. For example,
if α = 0.4, we set β to 4% of split, and thus 56% of LS. These tests use the
depth-first strategy above-mentioned.

Figure 4 shows that the best results for the Langford Number problem corre-
spond to a range of propagation rate between 35% and 45%. As a matter of fact,
when local search represents less than 10% of the search effort, reaching a solu-
tion means computing the fixpoint for constraint propagation (i.e., applying all
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Fig. 4. Cost of a solution Langford Number (Depth-First)
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Fig. 5. Cost of a solution Send+More=Money (Depth-First)

propagation functions). Note that, for this problem, tabu search alone (Figure 4,
left) provides better results than propagation with split (Figure 4, right).

Figure 5 shows the above-mentioned depth-first strategy to solve the S+M=
M problem. The standard deviation is important: indeed, although sCSPs and
domains are selected by the strategy, the choice of functions to apply is not
fixed (random). However, the average performances are more regular, and the
best range corresponds to 70%– 80% of propagation. Here, LS alone (Figure 5,
right) appears less efficient than CP (Figure 5, left).

Thus, choosing the best settings for hybridization depends on the problem
and on the strategies that are applied. Table 1 presents the best ranges using
the LS-Forward-checking strategy for different problems.
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Table 1. Best range of propagation rate (α) to compute a solution

Problem S+M LN42 Zebra M. square Golomb

Rate FC 70-80 15 - 25 60-70 30-45 30 - 40

These results point out that the incremental introduction of CP in LS (the
same remark is valid for LS in CP) improves the general efficiency of resolution.
These ratios of hybridization can thus be tuned to optimize performances.

Benefit of Hybridization with respect to LS and CP alone. In Table 2 we present
a comparative study of the hybridization CP+LS, CP alone, and LS alone:

– the three strategies above-mentioned (random, depth-first, LS forward check-
ing)

– CP+LS: the ratios (α, β, γ) are the best ratios selected in Table 1,
– CP (alone): the ratios are (90%, 10%, 0),
– LS (alone): the ratios are (0, 0, 100%).

Table 2. Average number of operations to compute a first solution

Strategy Method S+M LN42 M. square Golomb

Random LS 1638 383 3328 3442
CP+LS 1408 113 892 909

CP 3006 1680 1031 2170

D-First LS 1535 401 3145 3265
CP+LS 396 95 814 815

CP 1515 746 936 1920

FC LS 1635 393 3240 3585
CP+LS 22 192 570 622

CP 530 425 736 1126

Again, these results show that hybridization benefits from the interaction
between the solving methods. Improvements occur on problems for which LS
performs better than CP but also on problems for which CP is better than
LS. Moreover, the improvement is strongly related to the problem structure
(such as the density of solutions) and to the chosen strategy. Experiments with
the Width-First strategy above-mentioned are not presented here but provided
similar results.

6.2 CP+GA for Constraint Optimization Problems

Problem Instances. The BACP (Balanced Academic Curriculum Problem) is
a problem class issued from the CSPlib [13]: it consists in organizing courses in
order to balance the work load of students for each period of their curriculum. We



162 E. Monfroy, F. Saubion, and T. Lambert

Evaluation

Population

Generation k+1
601 ...

...

ga

Generation k

Population

Probability Pc = 0.9Probability Pm =0.1

Selection

Mutation

p’

p

c2c1

Crossover

p2p1

1001

Selection

601 ...

Fig. 6. ga functions

consider here various instantiations of the BACP: the bacp8, bacp10, and bacp12
problems issued from the CSPlib [13]; and finally data of this three curriculum
are used to form a new problem (bacpall) for which some courses are shared by
several curriculums.

Experimental Process. Similarly to CP+LS, our basic functions are organized
into three sets: the set of domain reduction functions dr, the set of split functions
sp, and the set of GA functions ga. In the following, the strategy is the depth-first
strategy presented in the previous section.

Here, reduction functions correspond to arc consistency operators and re-
duction of global constraints (e.g., period, load) used to model the problems
and to prune the search tree by detecting inconsistencies. The global constraint
period(i, δ, ε) computes the number of domains within the value i. If less than
j occurrences of i are present in the m different domains, then the current
CSP is locally inconsistent: δ ≤ (

∑m
k=1 1 | xk = i) ≤ ε . The global con-

straints load(i, β, γ) counts the charge for a given period i of the current CSP:
β ≤ (

∑m
k=1 ck | xk = j) ≤ γ .

sp are split operators which cut the selected domain into two subdomains.
ga are basic GA operators (see figure 6) which are instantiated by our genetic
algorithm: from a population k, our genetic algorithm generates a new population
k+1 of 60 individuals selected among 100 issued from k. When ga is called by
the main algorithm, the following different cases may occur:

– the population k + 1 has less than 100 individuals: an individual is selected
randomly; then, either it is coupled with another parent to create 2 children
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in the population k + 1, either it is submitted to mutation, or it remains
unchanged in the population k + 1.

– the population k + 1 has 100 individuals: the 60 best ones are selected ac-
cording to the evaluation function which takes into account the objective
function.

Experimental Results. For these experimentations, we integrated the GA
module (i.e., ga functions) in our constraint based solving system for hybridiza-
tion. We also added the notion of optimization to the single notion of solution.

In order to compare our results, we present the results of [8] using the linear
programming solver lp solve for the bacp8 and bacp10 problems (Table 3 shows
the progress of the cost –evaluation– of the objective function w.r.t. the compu-
tation time). The results with our hybrid solver CP+GA are shown in Table 4.
If lp solve is able to find the optimal solution for the first problem, it is not the
case for the second one.

Table 3. Results in seconds using lp solve

Sol quality bacp 8 Sol quality bacp 10

24 137.08 33 9.11

23 218.23 32 25.38

21 218.43 30 25.65

20 712.84 29 1433.18

19 1441.98 27 1433.48

18 1453.73 26 1626.49

17 (optimum) 1459.73 24 1626.84

As mentioned above, we control the rates of each family of functions dr,
sp and ga by defining the strategy (completing the depth-first strategy) as a
tuple (%dr,%sp,%ga) of application rates. These values correspond indeed to a
probability of application of a function from each family. In practice, we measure
in Figure 7 the rate of effective applications, i.e., we only count the functions
which are chosen according to the strategy and having a real impact on the
resolution.

The most interesting in such an hybridization is the completeness of the
association GA-CP, and the roles played by GA and CP in the search process (see
Figures 7): GA optimizes the solutions in a search space progressively becoming
locally consistent (and thus smaller and smaller) using constraints propagation
and split. To evaluate the benefits of each of the methods we have measured:

– for CP: the number of effective reductions that are performed and the number
of split,

– and for GA: the fact that the next generation is globally better than the
previous one.

First of all, splits are limited to 1% of the total number of basic operations
(reduction functions) because of the space complexity they generate.
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Table 4. Results using GA+CP

Sol quality bacp 8 bacp 10 bacp 12

24 0.47 4.71 2.34

23 0.54 4.67 2.40

22 0.61 3.68 2.48

21 0.61 4.36 2.76

20 0.69 4.63 3.20

19 0.83 4.95 4.25

18 1.20 5.13 35.20

17 15.05 (optimum) 5.60

16 6.39

15 8.53

14 34.84 (optimum)

Concerning the single problems (bacp8, bacp10, bacp12). At the beginning, CP
represents 70% of the effort: constraint propagation narrows the search space.
On the contrary, GA represents about 30%. During this period, not enough local
consistency is enforced by constraint propagation, and GA only finds solutions
(satisfying all constraints) with costs greater than 21. Then, at the beginning of
the second half of the search process, CP and GA converge in terms of efficiency:
most of the sub-GCSP have reach the local consistency and tests over constraints
do not improve domain reduction. At the end, GA performs 70% of the search
effort to find the optimal solution.
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Concerning strategies using GA and CP alone. In this implementation, CP is
unable to find a feasible solution in 10 minutes cpu time. GA can find alone
the optimal value but is 10 times slower than the hybrid resolution GA + CP .
Therefore, we did not include these results in the tables.

In the figure for the all-period problem, CP and GA start searching with
the same efficiency; but while CP seems to be stable, most of the operations
are performed by the genetic process to improve the solution. This could be
explained by the fact that, in this problem, constraints are too weak with respect
to the number of variables and the size of the generated search space. But, in
our hybrid resolution system, GA appears as a powerful method even if most of
the constraint operators have not reached their fixpoints.

7 Perspectives and Conclusion

Most of hybrid approaches are ad-hoc algorithms based on a master-slave com-
bination: they favor the development of systems whose efficiency is strongly re-
lated to a given class of CSPs. In this paper, we have used a more suitable general
framework to model hybrid solving algorithms. We have shown that this work can
serve as a basis for the integration of LS and CP methods, and the integration of
GA and CP methods in order to highlight the connections between complete and
incomplete techniques and their main properties.

We have shown how to integrate two techniques in the framework of chaotic
iterations: CP+LS and CP+GA. However, this requires defining a new computa-
tion structure and orders on these structures. Moreover, the reduction functions
have to be adapted to the new structures. Thus, integrating a new technique
requires modifying the current structures and functions. We plan to modify our
framework in order to be able to add a new technique without modifying the
structure, simply by extending the existing structure. We also plan to modify
function definition so that they can be defined independently. Some new types
of functions operating the cooperation between the techniques. The first use of
this new framework will be an hybrid solver CP+LS+GA.

A future extension will consists in providing “tools” to help designing and
testing finer strategies in the GI algorithm in our particularly suitable uniform
framework. To this end, we plan to extend works of [16] where strategies are built
using some composition operators in the GI algorithm. Moreover, this will also
open possibilities of concurrent and parallel applications of reduction functions
inside the model.

At last, we plan to extend our prototype implementation (Section 6) into a
complete generic implementation of our framework.
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