
On Hybridization of Local Search
and Constraint Propagation

Eric Monfroy1, Frédéric Saubion2, and Tony Lambert1,2

1 LINA, Université de Nantes, France
eric.monfroy@lina.univ-nantes.fr
2 LERIA, Université d’Angers, France

{frederic.saubion,tony.lambert}@univ-angers.fr

Abstract. Hybridization of local search and constraint programming
techniques for solving Constraint Satisfaction Problems is generally re-
stricted to some kind of master-slave combinations for specific classes of
problems. In this paper we propose a theoretical model based on K.R.
Apt’s chaotic iterations for hybridization of local search and constraint
propagation. Hybrid resolution can be achieved as the computation of a
fixpoint of some specific reduction functions. Our framework opens up
new and finer possibilities for hybridization/combination strategies. We
also present some combinations of techniques such as tabu search, node
and bound consistencies. Some experimental results show the interest of
our model to design such hybridization.

1 Introduction

Constraint Satisfaction Problems (CSP) [15] provide a general framework for the
modeling of many practical applications (planning, scheduling, time tabling,...).
A CSP is usually defined by a set of variables associated to domains of possible
values and by a set of constraints. We only consider here CSP over finite domains.
Constraints can be understood as relations over some variables and therefore,
solving a CSP consists in finding tuples that belong to each constraint (an as-
signment of values to the variables that satisfies these constraints). To this end,
many resolution algorithms have been proposed and we may distinguish at least
two classes of general methods: 1) complete methods aim at exploring the whole
search space in order to find all the solutions or to detect that the CSP is not
consistent. Among these methods, we find methods based on constraint prop-
agation, one of the most common techniques from constraint programming [4]
(CP) for solving CSP; and 2) incomplete methods (such as Local Search [1] (LS))
mainly rely on the use of heuristics providing a more efficient exploration of
interesting areas of the search space in order to find some solutions.

A common idea is to build more efficient and robust algorithms by combining
several resolution paradigms in order to take advantage of their respective assets
(e.g., [5] presents an overview of possible uses of LS in CP). The benefit of the
hybridization LS+CP is well-known and does not have to be proven (see e.g., [8,
13, 12, 14]). Most of the previous works are either algorithmic approaches which

B. Demoen and V. Lifschitz (Eds.): ICLP 2004, LNCS 3132, pp. 299–313, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

300 Eric Monfroy, Frédéric Saubion, and Tony Lambert

define a kind of master-slave combination (e.g., LS to guide the search in CP,
or CP to reduce interesting area of the search space explored in LS), or ad-hoc
realizations of systems for specific classes of problems.

In this paper, we are concerned with a model for hybridization in which local
search [1] and constraint propagation [4] are broken up into their component
parts. These basic operators can then be managed at the same level by a single
mechanism. In this framework, properties concerning solvers (e.g., termination,
solutions) can be easily expressed and established. This framework also opens
up new and finer possibilities of combination strategies.

Our model is based on K.R. Apt’s chaotic iterations [2] which define a math-
ematical framework for iteration of a finite set of functions over “abstract” do-
mains with partial ordering. This framework is well-suited for solving CSPs with
constraint propagation: domains are instantiated with variable domains (possible
values of variables), and functions with domain reduction functions to remove
inconsistent (w.r.t. constraints) values of domain variables (reduction functions
abstract the notion of constraint in this mechanism).

Moreover, to get a complete solver (a solver which is always able to determine
whether a CSP has some solutions), constraint propagation is generally associ-
ated with a splitting mechanism (a technique such as enumeration or bisection)
to cut the search space into some smaller search spaces from which one can hope
to perform more propagation. Propagation and splitting are interleaved until the
solutions are reached.

In our model, Local Search [1] is based on 3 notions: samples which are
particular points or sets of points of the search space, neighborhood that defines
which samples can be reached from a specific sample, and a fitness function that
defines the “quality” of a sample. Then, LS explores the search space by moving
from sample to sample guided by the fitness function in order to reach a local
optimum.

For our purpose, we introduce in our model the notion of sCSP (sampled
CSP) which is an extension of CSP with a path (list) of samples (generally points
of the search space). We also integrate the splitting as some reduction functions.
This way, the “abstract” domains of chaotic iteration are instantiated with union
of sCSPs. Usual domain reduction functions (used for constraint propagation)
are extended to fit this new domain. Some new functions (the LS functions)
are also introduced to jump from samples to samples: these functions have the
sufficient properties required to be used in the chaotic iteration algorithm.

Thus, in the chaotic iteration framework, constraint propagation functions,
local search moves, and splitting functions are considered at the same level and
all apply to unions of sCSPs. Since interleaving and order of applications of these
functions are totally free, this framework enables one to design finer strategies for
hybridization than the usual master-slave combinations. Moreover, termination
of the realized solvers is straight forward, i.e., fixpoint of the reduction functions.

In order to illustrate our framework, we realized some hybrid solvers using
some well-known techniques and strategies such as tabu search (for LS), node
and arc consistencies (for propagation), and bisection functions (for splitting).

On Hybridization of Local Search and Constraint Propagation 301

We obtained some experimental results that show the interest of combination
strategies compared to a single use of these methods. Moreover, the combination
strategies can easily be designed and specified, and their properties can be proven
in our model.

This paper is organized as follows. Section 2 describes constraint propaga-
tion and local search in terms of basic operators. We present our framework
for hybridization in Section 3. Some experiments are given in Section 4 before
concluding in Section 5.

2 Constraint Satisfaction Problems

In this section we recall basic notions related to Constraint Satisfaction Prob-
lems (CSP) [15] together with their resolution principles. Complete resolution
is presented using the theoretical model developed by K.R. Apt [2, 3]. We then
briefly describe the main lines of a local search process.

A CSP is a tuple (X,D,C) where X = {x1, · · · , xn} is a set of variables
taking their values in their respective domains D = {D1, · · · , Dn}. A constraint
c ∈ C is a relation c ⊆ D1 × · · · ×Dn

1. In order to simplify notations, D will
also denote the Cartesian product of Di and C the union of its constraints. A
tuple d ∈ D is a solution of a CSP (X,D,C) if and only if ∀c ∈ C, d ∈ c.

2.1 Solving a CSP with Complete Resolution Techniques

As mentioned in introduction, complete resolution methods are mainly based
on a systematic exploration of the search space, which corresponds obviously
to the set of possible tuples. To avoid the combinatorial grow up of this explo-
ration, these methods use particular heuristics to prune the search space. The
most popular of these techniques (i.e., constraint propagation) is based on lo-
cal consistency properties. A local consistency (e.g., [9, 11]) is a property of the
constraints which allows the search mechanisms to delete values from variables
domains which cannot lead to solutions. We may mention node consistency and
arc consistency [10] as famous examples of local consistencies. Complete search
algorithms use constraint propagation techniques and splitting. Constraint prop-
agation consists in examining a subset (usually a single constraint) C′ of C,
deleting some inconsistent values (from a local consistency point of view) of the
domains of variables appearing in C′ and to propagate this domain reduction to
domains of variables appearing in C \C′. When no more propagation is possible
and the solutions are not reached, the CSP is split into sub-CSPs (generally, the
domain of a variable is split into two sub-domains, leading to two sub-CSPs) on
which propagation is applied again, and so on until the solutions are reached.

K.R. Apt proposed in [2, 3] a general theoretical framework for modeling
such reduction operators. In this context, domain reduction corresponds to the
1 Note that for sake of simplicity, we consider that each constraint is over all the

variables x1, . . . , xn. However, one can consider constraints over some of the xi.
Then, the notion of scheme [2, 3] can be used to denote sequences of variables.

302 Eric Monfroy, Frédéric Saubion, and Tony Lambert

computation of a fixpoint of a set of functions over a partially ordered set. These
functions, called reduction functions, abstract the notion of constraint.

The computation of the least common fixpoint of a set of functions F is
achieved by the following algorithm:

GI: Generic Iteration Algorithm
d :=⊥;
G := F ;
While G �= ∅ do

choose g ∈ G;
G := G− {g};
G := G ∪ update(G, g, d);
d := g(d);

endwhile

where G is the current set of functions still to be applied (G ⊆ F), d is a partially
ordered set (the domains in case of CSP), and for all G, g, d the set of functions
update(G, g, d) from F is such that:

– {f ∈ F −G | f(d) = d ∧ f(g(d)) �= g(d)} ⊆ update(G, g, d).
– g(d) = d implies that update(G, g, d) = ∅.
– g(g(d)) �= g(d) implies that g ∈ update(G, g, d)

Suppose that all functions in F are inflationary (x 	 f(x) for all x) and
monotonic (x 	 y implies f(x) 	 f(y) for all x, y) and that (D,) is finite.
Then, every execution of the GI algorithm terminates and computes in d the
least common fixpoint of the functions from F (see [2]).

Note that in the following we consider only finite partial orderings. Constraint
propagation is now achieved by instantiating the GI algorithm:

– the 	 ordering is instantiated by ⊇, the usual set inclusion,
– d :=⊥ corresponds to d := D1 × . . . × Dn, the Cartesian product of the

domains of the variables from the CSP,
– F is a set of monotonic and inflationary functions (called domain reduction

functions) which abstract the constraints to reduce domains of variables. For
example, one of the domain reduction functions to reduce Boolean variables
using a and(X,Y, Z) 2 constraint is defined by: if the domain of Z is {1},
then the domains of X and Y must be reduced to {1}.

The result is the smallest box (i.e., Cartesian product of domains) w.r.t. the
given domain reduction functions that contains the solutions of the CSP.

At this point, in order to get the solutions of the CSP, one has to explore
the reduced domains by enumeration or splitting techniques (and then, again,
propagation, and so on). This usually implies an algorithmic process interleaving
splitting and propagation phases. However, in the following, we will integrate
splitting as a reduction function inside the GI algorithm, and we will extend the
notion of CSP to sampled CSP on which an other type of reduction functions
will be applied to mimic basic operations of local search algorithms.
2 and(X,Y,Z) represents the Boolean relation X ∧ Y = Z.

On Hybridization of Local Search and Constraint Propagation 303

2.2 Solving CSP with Local Search

Given an optimization problem (which can be minimizing the number of vio-
lated constraints and thus trying to find a solution of the CSP), local search
techniques [1] aim at exploring the search space, moving from a configuration to
one of its neighbors. These moves are guided by a fitness function which eval-
uates the benefit of such a move in order to reach a local optimum. We will
generalize the definition of local search in next sections.

For the resolution of a CSP (X,D,C), the search space can be usually defined
as the set of possible tuples of D = D1 × · · · × Dn and the neighborhood is a
mapping N : D → 2D. This neighborhood function defines indeed the possible
moves from a configuration (a tuple) to one of its neighbors and therefore fully
defines the exploration landscape. The fitness (or evaluation) function eval is
related to the notion of solution and can be defined as the number of constraints
c such that t �∈ c (t being a tuple from D).

In this case, the problem to solve is indeed a minimization problem. Given a
configuration d ∈ D, two basic strategies can be identified in order to continue
the exploration of D:

– intensification: choose d′ ∈ N (d) such that eval(d′) < eval(d).
– diversification: choose any other neighbor d′.

The intensification process only performs improving moves while diversification
strategy allows the process to move to a worst neighbor w.r.t. the eval function.
Any local search algorithm is based on the management of these basic heuristics
by introducing specific control features. Therefore, a local search algorithm can
be considered as a sequence of moves on a structure ordered according to the
evaluation function.

3 A Uniform Computational Framework

From these different CSP resolution approaches, our aim is to integrate the var-
ious involved computation processes in a uniform description framework. The
purpose of this section is to instantiate the general computation scheme pre-
sented in Section 2.1.

Our idea is to extend the set of usual functions used in the generic iteration
algorithm with splitting operators and local search strategies. Then, these search
methods can be viewed as the computation of a fixpoint of a set of functions on
an ordered set. Therefore, the first step of our work consists in defining the main
structure.

3.1 Sampling the Search Space

As we have seen, domain reduction and splitting operate on domains of val-
ues while local search acts on a different structure, which usually corresponds
to points of the search space. Here, we propose a more general and abstract
definition based on the notion of sample.

304 Eric Monfroy, Frédéric Saubion, and Tony Lambert

Definition 1 (Sample). Given a CSP (X,D,C), we define a sample function
ε : D → 2D. By extension, ε(D) denotes the set {ε(d)| d ∈ D}.

Generally, ε(d) is restricted to d and ε(D) = D, but it can also be a scatter
of tuples around d, an approximation or a box covering d (e.g., for continu-
ous domains). Moreover, it is reasonnable to impose that ε(D) contains all the
solutions. Indeed, the search space D is abstracted by ε(D) to be used by LS.

In this context, a local search can be fully defined by a neighborhood function
on ε(D) and the set of visited samples for each local search path composed by a
sequence of moves. Given a neighborhood function N : ε(D) → 2ε(D), we define
the set of possible local search paths as LSD =

⋃

i>0

{p = (s1, · · · , si) ∈ ε(D)i | ∀j, 1 ≤ j < i− 1, sj+1 ∈ N (sj) and s1 ∈ ε(D)}

since the fundamental property of local search relies on its exploration based
on the neighborhood relation. From a practical point of view, a local search
is limited to finite paths according to a stop criterion which can be a fixed
maximum number of iterations or, in our context of CSP resolution, the fact
that a solution is reached. For this concern, according to Section 2.2, we consider
an evaluation function eval: ε(D) → IN such that eval(s) represents the number
of constraints unsatisfied by s and eval(s) is equal to 0 iff s is a solution. We
denote s <eval s′ the fact that eval(s) < eval(s′).

Therefore, from a LS point of view, a result is either a search path leading
to a solution or a search path of a maximum given size.

Definition 2. We consider an order 	ls on LSD defined by:

(s′1, . . . , s
′
m) 	ls (s1, . . . , sn) iff eval(sn) = 0 or n ≥ m.

Consider p1 = (a, b), p2 = (a, c) and p3 = (b) three elements of LSD such that
eval(b) = 0 (i.e., b is a solution). Then, they all correspond to possible results of
a local search of size 2, and they are equivalent w.r.t. to Definition 2.

3.2 Computation Structure

We now instantiate the abstract framework of K.R. Apt described in Section 2.1.

Definition 3. A sampled CSP (sCSP) is defined by a triple (D,C, p), a sample
function ε, and a local search ordering 	ls where

– D = D1, ..., Dn

– ∀c ∈ C, c ⊆ D1 × . . .×Dn

– p ∈ LSD
Note that, in our definition, the local search path p should be included in the
box defined by ε(D). We denote SCSP the set of sCSP and we define now an
ordering relation on the structure (SCSP,).

On Hybridization of Local Search and Constraint Propagation 305

Definition 4. Given two sCSPs ψ = (D,C, p) and ψ′ = (D′, C, p′),

ψ 	 ψ′ iff D′ ⊆ D or (D′ = D and p 	ls p′).

This relation is extended on 2SCSP as:

{φ1, . . . , φk} 	 {ψ1, . . . , ψl} iff ∀φi, (∃ψj , φi 	 ψj and � ∃ψj , ψj 	 φi)

where i ∈ [1..k], j ∈ [1..l].

Note that this ordering on sCSPs could be extended by also considering an order
on constraints; this would enable constraint simplifications.

We denote ΣCSP the set 2SCSP which constitutes the key set of our com-
putation structure. We denote σCSP an element of ΣCSP . The least element
⊥ is {(D,C, p)}, i.e., the initial σCSP to be solved.

3.3 Notion of Solution

Our framework is dedicated to CSP resolution and therefore we have to define
precisely the notion of solution w.r.t. the previous computation structure. We
should note that this notion is clear from each side of the resolution (i.e., com-
plete and incomplete methods). From the complete resolution point of view, a
solution of a CSP is a tuple which satisfies all the constraints. From the LS point
of view, the notion of solution is related to the evaluation function eval which
defines a solution as an element s of ε(D) such that eval(s) = 0.

Given a sCSP ψ = (D,C, p), these two points of view induce two sets of
solutions SolD(ψ) = {d ∈ D|∀c ∈ C, d ∈ c} and SolLSD (ψ) = {(s1, · · · , sn) ∈
LSD | eval(sn) = 0}.
Definition 5. Given a sCSP ψ = (D,C, p), the set of solutions of ψ is defined
by:

Sol(ψ) = {(d, C, p)|d ∈ SolD(ψ) or p ∈ SolLSD (ψ)}
This notion is extended to any σCSP Ψ as Sol(Ψ) =

⋃
ψ∈Ψ Sol(ψ).

3.4 Reduction Functions Definitions and Properties

We have now to define the notion of function on ΣCSP . Given an element
Ψ = {ψ1, · · · , ψn} of ΣCSP , we have to apply functions on Ψ which correspond
to domain reduction, domain splitting, and local search. These functions may
operate on various elements of Ψ , and for each ψi on some of its components.
We should note that since we consider here finite initial CSPs, our structure is
a finite partial ordering.

Definition 6 (Domain reduction function). A domain reduction function
is a function red on ΣCSP s.t. for all Ψ = {ψ1, . . . , ψn} ∈ ΣCSP , red(Ψ) =
{ψ′

1, . . . , ψ
′
n} and ∀i ∈ [1 · · ·n]:

306 Eric Monfroy, Frédéric Saubion, and Tony Lambert

– either ψi = ψ′
i

– or ψi = (D,C, p), ψ′
i = (D′, C, p′) and D ⊇ D′ and SolD(ψi) = SolD(ψ′

i).

Note that this condition insures that Ψ 	 red(Ψ) and that the function
is inflationary and monotonic on (ΣCSP,). It allows one to reduce several
domains of several sCSPs of a σCSP at the same time. From a constraint
programming point of view, no solution of the initial CSP is lost by a domain
reduction function. This is also the case for domain splitting as defined below.

Definition 7 (Domain splitting). A domain splitting function is a function
sp on ΣCSP such that for all Ψ = {ψ1, . . . , ψn} ∈ ΣCSP :

a. sp(Ψ) = {ψ′
1, . . . , ψ

′
m} with n ≤ m,

b. ∀i ∈ [1..n],
• either ∃j ∈ [1..m] such that ψi = ψ′

j

• or there exist ψ′
j1 , . . . , ψ

′
jh

, j1, . . . , jh ∈ [1..m] such that SolD(ψi) =⋃
k=1..h SolD(ψ′

jk
).

c. and, ∀j ∈ [1..m],
• either ∃i ∈ [1..n] such that ψi = ψ′

j

• or ψ′
j = (D′, C, p′) and there exists ψi = (D,C, p), i ∈ [1..n] such that

D ⊃ D′.

Conditions a. and b. ensure that some sCSPs have been split into sub-sCSPs by
splitting their domains (one or several variable domains) into smaller domains
without discarding solutions (defined by the union of solutions of the ψi). Con-
dition c. ensures that the search space does not grow: none of the domain of
the sCSPs composing Ψ ′ is not included in one of the domain of some sCSP
composing Ψ . Note that the domain of several variables of several sCSPs can be
split at the same time.

Definition 8 (Local Search). A local search function λN is a function

λN :ΣCSP → ΣCSP
{ψ1, · · · , ψn} �→ {ψ′

1, · · · , ψ′
n}

where

– N is the maximum number of consecutive moves
– ∀i ∈ [1..n]

• either ψi=ψ′
i

• or ψi = (D,C, p) and ψ′
i = (D,C, p′) with p = (s1, · · · , sk) and p′ =

(s1, · · · , sk, sk+1) such that sk+1 ∈ N (sk) ∩D and k + 1 ≤ N .

N represents the maximum length of a local search path, i.e., the number of
moves allowed in a usual local search process. A local search function can try
to improve the sample of one or several sCSPs at once. Note that ψi=ψ′

i may
happen when:

1. p ∈ SolLSD (ψ): the last sample sn of the current local search path cannot
be improved using λN ,

On Hybridization of Local Search and Constraint Propagation 307

2. n = N : the maximum allowed number of moves has been reached,
3. λN is the identity function on ψi, i.e., λN does not try to improve the local

search path of the sCSP ψi. This might happen when no possible move can
be performed (e.g., a descent algorithm has reached a local optimum or all
neighbors are tabu in a tabu search algorithm [6]).

3.5 Solving σCSP s

The complete solving of a σCSP {(D1, . . . , Dn, C, p)} now consists in instanti-
ating the GI algorithm:

Computation Structure.

– the 	 ordering is instantiated by the ordering given in Definition 4,
– d :=⊥ corresponds to d := {(D1, . . . , Dn, C, p)}, the Cartesian product of

the variables domains and of the sample from the sCSP,
– F is a set of given monotonic and inflationary functions as defined in Sec-

tion 3.4: domain reduction functions (extensions of usual domain reduction
functions for CSPs), domain splitting functions (usual splitting mechanisms
integrated as reduction functions), and local search functions (e.g., functions
for descent, tabu search, . . .).

Functions. We propose here an instantiation of the function schemes presented
in the previous section.

From an operational point of view, reduction functions have to be applied on
some selected sCSP s of a given σCSP . Therefore we have to consider functions
driven by a selection operator. Given a selection function select:A → 2B let
us consider a function fselect:A → C such that fselect(x) = g(y), y ∈ select(x)
where g:B → C. Therefore, fselect can be viewed as a non deterministic function.
Formally, we may associate to any function fselect a family of deterministic
functions (f i)i>0 such that ∀x ∈ A, ∀y ∈ select(x), ∃k > 0, fk(x) = g(y). If we
consider finite sets A and B then this family is also finite.

This corresponds to the fact that all possible functions are needed for each
σCSP that can result from the application of some functions on the initial σCSP
to model the different possible executions of the resolution process 3.

We first define functions on SCSP w.r.t. selection functions to select the do-
mains on which the functions apply. Similarly and in order to extend operations
on SCSP to ΣCSP , we introduce a selection process which allows us to extract
particular sCSP s of a given σCSP (see Figure 1).

Let us consider a domain selection function SelD:SCSP → 2D and a sCSP
selection function Selψ:ΣSCSP → ΣSCSP .

3 This is necessary in theory, however, in practice, only required functions are fed in
the GI algorithm.

308 Eric Monfroy, Frédéric Saubion, and Tony Lambert

Ψ = {ψ1, . . . , ψk, . . . , ψn}
Ψ ∈ ΣCSP

ψ1 ψk ψn

Dl DmD1 . . .D1 . . .

Dl

SelD(ψk) = Dl

Selψ(Ψ) = {ψk}

ψk = ((D1, . . . ,Dl, . . . ,Dm), C, p)
ψk ∈ SCSP

Fig. 1. Selection functions

Domain Reduction. We may first define a domain reduction operator on a
single sCSP as:

redSelD : SCSP → SCSP
ψ = (D,C, p) �→ (D′, C, p′)

such that

1. D = {D1, · · · , Dn}, D′ = {D′
1, · · · , D′

n} and ∀1 ≤ i ≤ n

– Di ∈ D \ SelD(ψ) ⇒ D′
i = Di

– Di ∈ SelD(ψ) ⇒ D′
i ⊆ Di

2. p′ = p if p ∈ LS ′
D otherwise p′ is set to any sample chosen in ε(D′)

Note that Condition 2. insures that the local search path associated to the
sCSP stays in ε(D′) 4. This function is extended to ΣCSP as:

redSelψ ,SelD : ΣCSP → ΣCSP
Ψ �→ (Ψ \ Selψ(Ψ))

⋃
ψ∈Selψ(Ψ) red

SelD (ψ)

Splitting. We may first define a splitting operator on a single sCSP as:

spSelDk : SCSP → ΣCSP
ψ �→ Ψ ′

with ψ = (D1, . . . , Dh, . . . , Dn, C, p) where {Dh} = SelD(ψ) and
Ψ ′ = {(D1, . . . , Dh1 , . . . , Dn, C, p1), · · · , (D1, . . . , Dhk . . . , Dn, C, pk)} such that

1. Dh =
k⋃

i=1

Dhi

2. for all i ∈ [1..k], pi = p if p ∈ LSDhi otherwise, pi is set to any sample chosen
in ε(D1, . . . , Dhi , . . . , Dn).

4 Note that we could keep p′ = (si) where si is the latest element of p which belongs
to D′, for instance, or a suitable sub-path of p. We have chosen to model here a
restart from a randomly chosen sample after each reduction or splitting.

On Hybridization of Local Search and Constraint Propagation 309

For the sake of readability we consider here the split of a single domain in the
initial sCSP but it can obviously be extended to any selection function. The last
condition is needed to satisfy the sCSP definition and corresponds to the fact
that, informally, the samples associated to any sCSP belong to the box induced
by their domains.

sp
Selψ ,SelD
k : ΣCSP → ΣCSP

Ψ �→ (Ψ \ Selψ(Ψ))
⋃
ψ∈Selψ(Ψ) sp

SelD
k (ψ)

Local Search. As mentioned above, local search is viewed as the definition
of a partial ordering 	ls which is used for the definition of the ordering 	 on
ΣCSP . The remaining components to be defined are now: 1) the strategy to
obtain a local search path p′ of length n+1 from a local search path p of length
n, and 2) the stop criterion which is usually based on a fixed limited number of
LS moves and, in this particular context of CSP resolution, the notion of reached
solution. We first define a local search operator on SCSP based on a function
strat:SCSP → 2ε(D) which defines the choice strategy of a given local search
heuristics in order to move from a sample to one of its neighbors.

λstratN : SCSP → SCSP
ψ �→ ψ′

where

– N is the maximum number of moves
– ψ = (C,D, p) and ψ′ = (C,D, p′) with p = (s1, · · · , sn)

1. p′ = p if p ∈ SolLSD
2. p′ = p if n = N
3. p′ = (s1, · · · , sn, sn+1) s.t. sn+1 ∈ strat(ψ) ∩D otherwise

We provide here some examples of well known “move” heuristics.

– Descent: selects better neighbors
stratd((D,C, (s1, · · · , sn))) = {sn+1 ∈ ε(D) | sn+1 <eval sn∧sn+1 ∈ N (sn)}

– Strict Descent: selects best improving neighbors
stratsd((D,C, (s1, · · · , sn))) = {sn+1 ∈ ε(D) | sn+1 <eval sn ∧ sn+1 ∈
N (sn) ∧ ∀s′ ∈ N (sn), sn+1 ≤eval s′}

– Random Walk: selects all the neighbors
stratrw((D,C, (s1, · · · , sn))) = {sn+1 ∈ ε(D) | sn+1 ∈ N (sn)}

– Tabu of length l: selects best neighbor not visited during the past l moves
strattabul ((D,C, (s1, · · · , sn))) = {sn+1 ∈ ε(D) | ∀n − l ≤ j ≤ n, sn+1 �=
sj ∧ sn+1 ∈ N (sn) ∧ ∀s′ ∈ N (sn), sn+1 ≤eval s′}

Note that, again, these functions satisfy the required properties (inflationary
and monotonic) to be fed in the GI algorithm. Then this function is extended
to ΣCSP as:

λ
Selψ ,strat
N : ΣCSP → ΣCSP

Ψ �→ (Ψ \ Selψ(Ψ))
⋃
ψ∈Selψ(Ψ) λ

strat
N (ψ)

310 Eric Monfroy, Frédéric Saubion, and Tony Lambert

Combination. The combination strategy is now totally managed by the “choose
function” of the GI algorithm: different scheduling of functions lead to the same
result (in term of least common fixpoint), but not with the same efficiency.

Note that in practice, we are not always interested in reaching the fixpoint
of the GI algorithm, but we can also be interested in solutions such as: sCSPs
which contain a solution for local search or a solution for constraint propagation.
In this case, different runs of the GI algorithm with different strategies (“choose
function”) can lead to different solutions (e.g., in case of problems with several
solutions, or several local minima).

Result of the GI Algorithm. We now compare the result of the GI algorithm
w.r.t. the Definition 5 of solution of a σCSP .

Since we are in Apt’s framework (concerning orderings and functions), given
a σCSP Ψ and a set F of reduction functions (as defined above) the GI algorithm
computes a common least fixpoint of the functions in F . Clearly, this fixpoint
glfp(Ψ) abstracts all the solutions of Sol(Ψ) :

–
⋃

(d,C,p)∈Sol(Ψ) d ⊇ ⋃
(d,C,p)∈glfp(Ψ) d

– for all (D,C, p) ∈ Sol(Ψ) s.t. p = (s1, . . . , sn) ∈ SolLSD (Ψ) there exists a
(d, C, p′) ∈ glfp(Ψ) s.t. sn ∈ ε(d).

The first item represents the fact that all domain reduction and splitting func-
tions used in GI preserve solutions. The second item ensures that all solutions
computed by LS functions are in the fixpoint of the GI algorithm.

In practice, one can stop the GI algorithm before the fixpoint is reached. For
example, one can compute the fixpoint of the LS functions; in this case, only
some applications of the CP functions can reduce the search space (and thus, the
possible moves). This corresponds to the hybrid nature of the resolution process
and the tradeoff between a complete and incomplete exploration of the space.

4 Experimentation

In this section, we present a prototype, developed in C++, which allows us to
test hybridization on different CSP examples.

4.1 Functions and Strategies

We choose ε(D1, · · · , Dn) as the Cartesian productD1×· · ·×Dn (ε(D) = D). We
consider the two selection functions min(Ψ) = {ψ} ⊆ Ψ such that � ∃ψ′, ψ 	 ψ′

and max(D) = {Di} such that ∀j �= i, |Di| ≥ |Dj| (if there are several possible
candidates choose the one with smallest index). A first set of domain reduction
functions DR contains node and bound consistency operators (see [10]). The
set SP contains the splitting operators splitmin,max2 and consist in cutting in
two the largest domain of the minimal element of a σCSP . At last the set LS
contains functions which corresponds to a tabu method: λ

min,strattabul
N .

On Hybridization of Local Search and Constraint Propagation 311

The purpose of this section is not to test a high performance algorithm on
large scale benchmarks but to prove the interest of our framework over various
small problems.

According to the generic algorithm GI, note that one has to define a choose
strategy at each iteration and to update the set of functions. Here we describe
three different choose functions:

– DR∪SP : in this case we consider the initial set of functions F = DR∪SP
then the choose function is defined as: choose any g ∈ G∩DR or any g ∈ G
if G ∩ DR = ∅ (G being the set of functions still to be applied in the GI
algorithm). This simulates a complete backtracking algorithm.

– LS: here we consider F = LS. Note that in this case there is only one LS
function for tabu search. We have also experimented a descent with random
walk algorithm. In that case, reduction functions corresponding to descent
and random walk strategies are applicable on each sCSP and one has to
choose them alternatively with a certain probability.

– DR ∪ SP ∪ LS: we consider F = DR ∪ P ∪ LS. The choose function is:
while G ∩DR �= ∅ choose g ∈ G ∩DR; then choose any g ∈ SP ; then while
G ∩ LS �= ∅ choose g ∈ G ∩ LS. In other terms, this strategy is: perform all
possible domain reductions, then make a split, then a full local search; and
iterate on this process.

Selected Problems. We propose various problems : S+M=M, a well-known
crypto-arithmetic problem which consists in solving the equation SEND +
MORE = MONEY by assigning a different digit to each letter; Marathon, a
problem of arrival in a race knowing particular information about the competi-
tors (6 variables and 29 constraints); Scheduling problem (15 variables and
29 constraints); classical Magic Square, Langford number and N-queens
benchmarks.

4.2 Experimental Results

The values given in the following table correspond to the truncated average
of 50 independent runs. Concerning DR ∪ SP , we count then the number of
iterations of splitting operators which corresponds to the number of nodes in a
classical backtracking algorithm. Concerning LS, we count the number of applied
functions, which corresponds to the number of moves performed by the local
search. We also mention the success rate. The computation time (t) is given in
seconds. For DR∪SP ∪LS, we limit the number of moves for each local search
to N = 100, while for LS alone, a maximum of 500, 000 moves is allowed. Tabu
list length l is set to 10.

We compare first the number of nodes with DR∪SP and DR∪ SP ∪LS to
get the first solution. Table 1 shows that DR ∪ SP ∪LS finds a solution with a
smaller number of nodes compared to DR ∪ SP alone. In the combination, the
relative efficiency of the LS part depends on the problem. For problems with
one solution such as S+M=M, the benefit is less significant than for the other
benchmarks (in particular N-queens).

312 Eric Monfroy, Frédéric Saubion, and Tony Lambert

Table 1. First solution (DR ∪ SP vs. DR ∪ SP ∪ LS vs. LS)

Problem DR ∪ SP DR ∪ SP ∪ LS LS
(nodes | t) (nodes | moves | t) (s. rate | moves | t)

S+M=M (10 | 0.0) (5.4 | 375.2 | 0.0) (44% | 59294 | 5.6)

Marathon (8 | 0.0) (1 | 11.5 | 0.0) (100% | 18 | 0.0)

Scheduling (31 | 0.0) (1 | 2.5 | 0.0) (8% | 4726 | 59.1)

24-queens (3329800 | 1631.2) (1.2 | 62.8 | 0.6) (100% | 201.7 | 2.1)

Magic-Square-4 (39 | 0.0) (13.5 | 743 | 0.2) (100% | 3423 | 2.0)

Langford 2 4 (4 | 0.0) (1.6 | 95 | 0.0)) (100 % | 601 | 0.0)

Table 1 also shows the efficiency of the local consistency which guides the local
search (see comparisons DR ∪ SP ∪ LS vs. LS), in particular on S+M=M and
Scheduling. One should remark that the success rate of LS is also an important
parameter which is really improved by the combination since in that case, hybrid
solving always succeeds in finding one solution.

Computation time is, of course, strongly related to the implementation of
the different operators. We may remark that this computation is improved by
using DR∪SP ∪LS instead of LS alone. The comparison between DR∪SP and
DR∪SP∪LS is not really significant except on N-queens where the hybridization
provides an important saving of time.

Finally, we have calculated the computing cost needed to get several solutions
with DR ∪ SP ∪ LS on a Magic-Square-3 problem which has 8 solutions. The
mechanisms progress together to get a set of distinct solutions by computing
fewer nodes (about 25 % less for each solution) than a classical backtracking
algorithm simulated byDR∪SP . To get several distinct solutions is a really good
asset compared to LS alone (which was not designed for computing different
solutions) and could be very interesting for number of problems.

At last, similar experiments have been performed with a hill climbing algo-
rithm and provided similar conclusions.

5 Perspectives and Conclusion

Most of hybrid approaches are ad-hoc algorithms based on a master-slave combi-
nation: they favor the development of systems whose efficiency is strongly related
to a given class of CSPs.

In this paper, we have presented a global model which is more suitable for
integrating different strategies of combination and for proving some properties
of these combinations. We have shown that this work can serve as basis for the
integration of LS and CP methods in order to highlight the connections between
complete and incomplete techniques and their main properties.

In the future, we plan to extend our framework in order to handle optimiza-
tion problems. From a LS point of view, this will change the strat functions used
to create the reduction functions. From a CP point of view, algorithms such as
Branch and Bound requires adding new constraints during resolution: this could
be done using a new type of reduction function in our model.

On Hybridization of Local Search and Constraint Propagation 313

An other future extension is to provide some “tools” to help designing finer
strategies in the GI algorithm. To this end, we plan to extend works of [7]
where strategies are built using some composition operators in the GI algorithm.
Moreover, this will also open possibilities of concurrent and parallel application
of reduction functions inside our model.

At last, we plan to complete our prototype implementation (Section 4) into
a “fully” generic implementation of our framework in order to design and test
new and finer efficient strategies of hybridization.

Ackowledgement. The authors are grateful to Willem Jan van Hoeve for the
interesting remarks he made on a preliminary version of this paper and to the
anonymous referees for their useful comments.

References

1. E. Aarts and J.K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley and Sons, 1997.

2. K. Apt. From chaotic iteration to constraint propagation. In 24th International
Colloquium on Automata, Languages and Programming (ICALP ’97, number 1256
in LNCS, pages 36–55. Springer, 1997. invited lecture.

3. K. Apt. The rough guide to constraint propagation. In Proc. of the 5th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP’99),
volume 1713 of LNCS, pages 1–23, Springer, 1999. (Invited lecture).

4. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.
5. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.

In Handbook of Metaheuristics. Kluwer, 2002.
6. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
7. L. Granvilliers and E. Monfroy. Implementing Constraint Propagation by Compo-

sition of Reductions. In C. Palamidessi, editor, Proceedings of International Con-
ference on Logic Programming, LNCS 2916, pages 300–314. Springer, 2003.

8. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence, 139(1):21–45, 2002.

9. A. Mackworth. Encyclopedia on Artificial Intelligence, chapter Constraint Satis-
faction. John Wiley, 1987.

10. K. Mariott and P. Stuckey. Programming with Constraints, An introduction. MIT
Press, 1998.

11. R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intel-
ligence, 28:225–233, 1986.

12. G. Pesant and M. Gendreau. A view of local search in constraint programming.
In Proc. of the Second International Conference on Principles and Practice of
Constraint Programming, number 1118 in LNCS, pages 353–366. Springer, 1996.

13. S. Prestwich. A hybrid search architecture applied to hard random 3-sat and low-
autocorrelation binary sequences. In Principle and Practice of Constraint Program-
ming - CP 2000, number 1894 in LNCS, pages 337–352. Springer, 2000.

14. P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint Programming - CP98,
number 1520 in LNCS, pages 417–431. Springer, 1998.

15. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, London, 1993.

	1 Introduction
	2 Constraint Satisfaction Problems
	2.1 Solving a CSP with Complete Resolution Techniques
	2.2 Solving CSP with Local Search

	3 A Uniform Computational Framework
	3.1 Sampling the Search Space
	3.2 Computation Structure
	3.3 Notion of Solution
	3.4 Reduction Functions Definitions and Properties
	3.5 Solving $sigma CSPs$

	4 Experimentation
	4.1 Functions and Strategies
	4.2 Experimental Results

	5 Perspectives and Conclusion
	References

